
Introduction to Game Theory

B. Nebel, R. Mattmüller
T. Schulte, D. Bergdoll
Summer semester 2018

University of Freiburg
Department of Computer Science

Exercise Sheet 4
Due: Monday, May 14, 2018

Exercise 4.1 (Linear Complementarity Problem, 1.5 + 1.5 points)

Consider the strategic game given by the following payoff matrix:

Player 1

Player 2
x y z

a 0, 0 3, 1 3, 3
b 1, 1 0, 0 1, 3
c 1, 1 1, 1 0, 0

(a) For the following pair of support sets formulate the corresponding linear
program: (supp(α), supp(β)) = ({a, b, c}, {x, y, z}).

(b) Solve the linear program and provide values for each α(a1) and β(a2),
a1 ∈ {a, b, c}, a2 ∈ {x, y, z}. What is the expected payoff (u, v) of the NE
computed above?

Exercise 4.2 (Naive Algorithm for solving LCPs, 1 + 3 + 1 points)

In this exercise you will implement the naive algorithm for solving LCPs in
an open source programming language of your choice. We highly recom-
mend using the Python 3 language. If your solution consists of multiple
files, submit a compressed archive (zip, gzip, rar, etc.) containing your source
code and all the files necessary to compile and run your program via email to
schultet@informatik.uni-freiburg.de. Don’t forget to mention all group
members in the email.

(a) Implement a program that reads in a two-player strategic game from an
external file and represents it internally. As an input format use our
json format for specifying strategic games. See http://gki.informatik.

uni-freiburg.de/teaching/ss18/gametheory/matching-pennies.json

for an example of the matching-pennies game. Note that most program-
ming languages provide modules or libraries for parsing json files. We
recommend using them.

(b) Implement a function that, for a given strategic two player game and
a pair of support sets, decides whether a solution to the corresponding
linear program exists. Use the linprog function of the scipy.optimize

module1 to solve the linear program and print the solution (if one exists)

1If you are not using Python 3 despite our recommendation you may want to have a look
at lp solve: http://lpsolve.sourceforge.net/5.5/



to the console. Your program should be callable from the command line
with two parameters (1) a game file and (2) a string specifying the support
sets for each player. Consider the following example:

> python solve.py matching-pennies.json [H,T][T,H]

player1: (H=0.5, T=0.5)

player2: (H=0.5, T=0.5)

The program solve.py outputs the solution to matching-pennies.json

for the support sets [H,T] and [T,H] for player1 and player2 respectively.

(c) Extend the functionality of (b) such that, if no second argument is pro-
vided, the program outputs all solutions to the strategic game. Start by
writing a routine that generates all possible combinations of support sets.
For each combination print the solution (if one exists) to the console.

The exercise sheets may and should be worked on and handed in in groups of
three students. Please indicate all names on your solution.


