Introduction to Game Theory

B. Nebel, R. MattmüllerT. Schulte, D. BergdollSummer semester 2018

University of Freiburg Department of Computer Science

Exercise Sheet 3 Due: Monday, May 7, 2018

Exercise 3.1 (Best response function, 3 points)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$, $A_1 = A_2 = \mathbb{R}^{\geq 0}$, $u_1(a_1, a_2) = a_1(a_2 - a_1)$ and $u_2(a_1, a_2) = a_2(1 - \frac{1}{2}a_1 - a_2)$ for all $(a_1, a_2) \in A$. Define all Nash equilibria of this game by constructing and analyzing the best response function of both players.

Exercise 3.2 (Kakutani's fixed point theorem, 1+1+1+1 points)

Let X be a compact, convex, non-empty subset of \mathbb{R}^n and let $f:X\to 2^X$ be a set-valued function for which

- for each $x \in X$, the set f(x) is nonempty and convex;
- the graph of f is closed (i.e. for all sequences $\{x_k\}$ and $\{y_k\}$ such that $y_k \in f(x_k)$ for all $k, x_k \to x$, and $y_k \to y$, we have $y \in f(x)$).

Then there exists $x^* \in X$ such that $x^* \in f(x^*)$.

Show that each of the following four conditions is necessary for Kakutani's theorem.

- (a) X is compact.
- (b) X is convex.
- (c) f(x) is convex for each $x \in X$.
- (d) f has a closed graph.

Hint: There exists a counter-example with n = 1 in each of the four cases.

The exercise sheets may and should be worked on and handed in in groups of three students. Please indicate both names on your solution.