Motivation

- We know: In finite strategic games, mixed-strategy Nash equilibria are guaranteed to exist.
- We don't know: How to systematically find them?
- Challenge: There are infinitely many mixed strategy profiles to consider. How to do this in finite time?

This chapter:

- Computation of mixed-strategy Nash equilibria for finite zero-sum games.
- Computation of mixed-strategy Nash equilibria for general finite two player games.
Motivation
Linear Programming
Zero-Sum Games
General Finite Two-Player Games
Summary

Digression:
We briefly discuss linear programming because we will use this technique to find Nash equilibria.

Goal of linear programming:
Solving a system of linear inequalities over \(n \) real-valued variables while optimizing some linear objective function.

Example
Production of two sorts of items with time requirements and profit per item. Objective: Maximize profit.

<table>
<thead>
<tr>
<th>Cutting</th>
<th>Assembly</th>
<th>Postproc.</th>
<th>Profit per item</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) sort 1</td>
<td>25</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>(y) sort 2</td>
<td>75</td>
<td>60</td>
<td>34</td>
</tr>
</tbody>
</table>

per day \(\leq 450 \) \(\leq 480 \) \(\leq 476 \) maximize!

Goal: Find numbers of pieces \(x \) of sort 1 and \(y \) of sort 2 to be produced per day such that the resource constraints are met and the objective function is maximized.

Example (ctd., formalization)

\[
\begin{align*}
x & \geq 0, \ y \geq 0 & \quad (1) \\
25x + 75y & \leq 450 \quad \text{(or } y \leq 6 - \frac{1}{3}x) & \quad (2) \\
60x + 60y & \leq 480 \quad \text{(or } y \leq 8 - x) & \quad (3) \\
68x + 34y & \leq 476 \quad \text{(or } y \leq 14 - 2x) & \quad (4) \\
\text{maximize } z = 30x + 40y & & \quad (5)
\end{align*}
\]

- Inequalities (1)–(4): Admissible solutions (They form a convex set in \(\mathbb{R}^2 \).
- Line (5): Objective function

Example (ctd., visualization)

Inequalities (1)–(4): Admissible solutions
(They form a convex set in \(\mathbb{R}^2 \).)
Line (5): Objective function

\[
\begin{align*}
x & \geq 0, \ y \geq 0 \\
y & \leq 6 - \frac{1}{3}x \\
y & \leq 8 - x \\
y & \leq 14 - 2x \\
\text{max } z = 30x + 40y
\end{align*}
\]
Definition (Linear program)

A **linear program** (LP) in standard form consists of:

- n real-valued variables x_i;
- n coefficients b_i;
- m constants c_j; $n \cdot m$ coefficients a_{ij};
- m constraints of the form
 $$c_j \leq \sum_{i=1}^{n} a_{ij} x_i,$$
 and an objective function to be minimized ($x_i \geq 0$)
 $$\sum_{i=1}^{n} b_i x_i.$$

Solution of an LP:

Assignment of values to the x_i satisfying the constraints and minimizing the objective function.

Remarks:

- **Maximization instead of minimization:** easy, just change the signs of all the b_i's, $i = 1, \ldots, n$.
- **Equalities** instead of inequalities: $x + y \leq c$ if and only if there is a $z \geq 0$ such that $x + y + z = c$ (z is called a **slack variable**).

Solution algorithms:

- Usually, one uses the **simplex algorithm** (which is worst-case exponential!).
- There are also polynomial-time algorithms such as interior-point or ellipsoid algorithms.

Tools and libraries:

- `lp_solve`
- CLP
- GLPK
- CPLEX
- gurobi
Mixed-Strategy Nash Equilibria in Finite Zero-Sum Games

We start with finite zero-sum games for two reasons:
- They are easier to solve than general finite two-player games.
- Understanding how to solve finite zero-sum games facilitates understanding how to solve general finite two-player games.

May 15th, 2017 B. Nebel, R. Mattmüller – Game Theory 16 / 36

Let G be a finite zero-sum game with mixed extension G'.

Then we know the following:
- Previous proposition implies: G' is also a zero-sum game.
- Nash’s theorem implies: G' has a Nash equilibrium.
- Maximinimizer theorem + (1) + (2) implies: Nash equilibria and pairs of maximinimizers in G' are the same.

May 15th, 2017 B. Nebel, R. Mattmüller – Game Theory 18 / 36

In the following, we will exploit the zero-sum property of a game G when searching for mixed-strategy Nash equilibria. For that, we need the following result.

Proposition
Let G be a finite zero-sum game. Then the mixed extension of G is also a zero-sum game.

Proof.
Homework.

May 15th, 2017 B. Nebel, R. Mattmüller – Game Theory 17 / 36

Consequence:
When looking for mixed-strategy Nash equilibria in G, it is sufficient to look for pairs of maximinimizers in G'.

Method: Linear Programming

May 15th, 2017 B. Nebel, R. Mattmüller – Game Theory 19 / 36
Linear Program Encoding

Approach:
- Let $G = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ be a finite zero-sum game:
 - $N = \{1, 2\}$.
 - A_1 and A_2 are finite.
 - $U_1(\alpha, \beta) = -U_2(\alpha, \beta)$ for all $\alpha \in \Delta(A_1), \beta \in \Delta(A_2)$.
- Player 1 looks for a maximinimizer mixed strategy α.
- For each possible α of player 1:
 - Determine expected utility against best response of pl. 2.
 - (Only need to consider finitely many pure candidates for best responses because of Support Lemma).
 - Maximize expected utility over all possible α.

Result: maximinimizer α for player 1 in G'
- Analogously: obtain maximinimizer β for player 2 in G'
- With maximinimizer theorem: we can combine α and β into a Nash equilibrium.

Example (Matching pennies)

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1, -1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

Linear program for player 1:
Maximize u subject to the constraints

$$\alpha(H) \geq 0, \alpha(T) \geq 0, \alpha(H) + \alpha(T) = 1,$$
$$\alpha(H) \cdot u_1(H, H) + \alpha(T) \cdot u_1(T, H) = \alpha(H) - \alpha(T) \geq u,$$
$$\alpha(H) \cdot u_1(H, T) + \alpha(T) \cdot u_1(T, T) = -\alpha(H) + \alpha(T) \geq u.$$

Solution: $\alpha(H) = \alpha(T) = 1/2, u = 0.$
Linear Program Encoding

- **Remark**: There is an alternative encoding based on the observation that in zero-sum games that have a Nash equilibrium, maximinimization and minimaximization yield the same result.
- **Idea**: Formulate linear program with inequalities
 \[U_1(a, \beta) \leq u \quad \text{for all } a \in A_1 \]

 and minimize \(u \). Analogously for \(\beta \).

General Finite Two-Player Games

- For general finite two-player games, the LP approach does not work.
- Instead, use instances of the linear complementarity problem (LCP):
 - Linear (in-)equalities as with LPs.
 - Additional constraints of the form \(x_i \cdot y_i = 0 \) (or equivalently \(x_i = 0 \lor y_i = 0 \)) for variables \(X = \{x_1, \ldots, x_k\} \) and \(Y = \{y_1, \ldots, y_k\} \), and \(i \in \{1, \ldots, k\} \).
 - **no** objective function.
- With LCPs, we can compute Nash equilibria for arbitrary finite two-player games.

4 General Finite Two-Player Games

Let \(A_1 \) and \(A_2 \) be finite and let \((\alpha, \beta)\) be a Nash equilibrium with payoff profile \((u, v)\). Then consider this LCP encoding:

\[
\begin{align*}
\alpha(a) \cdot (u - U_1(a, \beta)) &\geq 0 \quad \text{for all } a \in A_1 \\
\beta(b) \cdot (v - U_2(\alpha, b)) &\geq 0 \quad \text{for all } b \in A_2 \\
\sum_{a \in A_1} \alpha(a) &= 1 \\
\sum_{b \in A_2} \beta(b) &= 1
\end{align*}
\]
Remarks about the encoding:
- In (8) and (9): for instance,
 \[\alpha(a) \cdot (u - U_1(a, \beta)) = 0 \]
 if and only if
 \[\alpha(a) = 0 \quad \text{or} \quad u - U_1(a, \beta) = 0. \]
 This holds in every Nash equilibrium, because:
 - if \(a \notin \text{supp}(\alpha) \), then \(\alpha(a) = 0 \), and
 - if \(a \in \text{supp}(\alpha) \), then \(a \in B_1(\beta) \), thus \(U_1(a, \beta) = u \).
- With additional variables, the above LCP formulation can be transformed into LCP normal form.

Proof (ctd.):
- Solutions to the LCP are Nash equilibria (ctd.): Because of (6), \(u \) is at least the maximal payoff over all possible pure responses, and because of (8), \(u \) is exactly the maximal payoff.
 If \(\alpha(a) > 0 \), then, because of (8), the payoff for player 1 against \(\beta \) is \(u \).
 The linearity of the expected utility implies that \(\alpha \) is a best response to \(\beta \).
 Analogously, we can show that \(\beta \) is a best response to \(\alpha \) and hence \((\alpha, \beta) \) is a Nash equilibrium with payoff profile \((u, v) \).

Solution Algorithm for LCPs

Naïve algorithm:
Enumerate all \((2^n - 1) \cdot (2^m - 1) \) possible pairs of support sets.
For each such pair \((\text{supp}(\alpha), \text{supp}(\beta)) \):
- Convert the LCP into an LP:
 - Linear (in-)equalities are preserved.
 - Constraints of the form \(\alpha(a) \cdot (u - U_1(a, \beta)) = 0 \) are replaced by a new linear equality:
 - \(u - U_1(a, \beta) = 0 \), if \(a \in \text{supp}(\alpha) \), and
 - \(\alpha(a) = 0 \), otherwise,
 Analogously for \(\beta(b) \cdot (v - U_2(\alpha, b)) = 0 \).
 - Objective function: maximize constant zero function.
- Apply solution algorithm for LPs to the transformed program.
Solution Algorithm for LCPs

- Runtime of the naïve algorithm: $O(p(n+m) \cdot 2^{n+m})$, where p is some polynomial.
- Better in practice: Lemke-Howson algorithm.
- Complexity:
 - unknown whether LCP\text{SOLVE} $\in \mathbf{P}$.
 - LCP\text{SOLVE} $\in \mathbf{NP}$ is clear
 (naïve algorithm can be seen as a nondeterministic polynomial-time algorithm).

5 Summary

- Computation of mixed-strategy Nash equilibria for finite zero-sum games using linear programs.
 \implies polynomial-time computation
- Computation of mixed-strategy Nash equilibria for general finite two player games using linear complementarity problem.
 \implies computation in \mathbf{NP}.