Game Theory

3. Mixed Strategies

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller May 8, 2017

Mixed Strategies

Definitions Support Lemm

Nash's Theorem

Correlated Equilibria

Observation: Not every strategic game has a pure-strategy Nash equilibrium (e.g. matching pennies).

Question:

- Can we do anything about that?
- Which strategy to play then?

Idea: Consider randomized strategies.

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated Equilibria

UNI FREIB

Notation

Let X be a set.

Then $\Delta(X)$ denotes the set of probability distributions over X.

That is, each $p \in \Delta(X)$ is a mapping $p : X \to [0,1]$ with

$$\sum_{x\in X}p(x)=1.$$

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated Equilibria

A mixed strategy is a strategy where a player is allowed to randomize his action (throw a dice mentally and then act according to what he has decided to do for each outcome).

Definition (Mixed strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A mixed strategy of player i in G is a probability distribution $\alpha_i \in \Delta(A_i)$ over player i's actions.

For $a_i \in A_i$, $\alpha_i(a_i)$ is the probability for playing a_i .

Terminology: When we talk about strategies in A_i specifically, to distinguish them from mixed strategies, we sometimes also call them pure strategies.

Mixed Strategies Definitions

Nash's

Correlated

Definition (Mixed strategy profile)

A profile $\alpha = (\alpha_i)_{i \in N} \in \prod_{i \in N} \Delta(A_i)$ of mixed strategies induces a probability distribution p_{α} over $A = \prod_{i \in N} A_i$ as follows:

$$p_{\alpha}(a) = \prod_{i \in N} \alpha_i(a_i).$$

For $A' \subseteq A$, we define

$$p_{\alpha}(A') = \sum_{a \in A'} p_{\alpha}(a) = \sum_{a \in A'} \prod_{i \in N} \alpha_i(a_i).$$

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated Equilibria

Notation

Since each pure strategy $a_i \in A_i$ is equivalent to its induced mixed strategy \hat{a}_i

$$\hat{a}_i(a_i') = \begin{cases} 1 & \text{if } a_i' = a_i \\ 0 & \text{otherwise,} \end{cases}$$

we sometimes abuse notation and write a_i instead of \hat{a}_i .

Mixed Strategies

Definitions Support Lemm

Nash's Theorem

Correlated Equilibria

Example (Mixed strategies for matching pennies)

	Н	Τ
Н	1,-1	-1, 1
Т	-1, 1	1,-1

$$\alpha = (\alpha_1, \alpha_2), \quad \alpha_1(H) = \frac{2}{3}, \quad \alpha_1(T) = \frac{1}{3}, \quad \alpha_2(H) = \frac{1}{3}, \quad \alpha_2(T) = \frac{2}{3}.$$

This induces a probability distribution over $\{H, T\} \times \{H, T\}$:

$$p_{\alpha}(H,H) = \alpha_{1}(H) \cdot \alpha_{2}(H) = \frac{2}{9},$$
 $u_{1}(H,H) = +1,$ $p_{\alpha}(H,T) = \alpha_{1}(H) \cdot \alpha_{2}(T) = \frac{4}{9},$ $u_{1}(H,T) = -1,$ $p_{\alpha}(T,H) = \alpha_{1}(T) \cdot \alpha_{2}(H) = \frac{1}{9},$ $u_{1}(T,H) = -1,$ $p_{\alpha}(T,T) = \alpha_{1}(T) \cdot \alpha_{2}(T) = \frac{2}{9},$ $u_{1}(T,T) = +1.$

Mixed Strategies Definitions

Nash's Theorem

Correlated Equilibria

Expected Utility

Definition (Expected utility)

Let $\alpha \in \prod_{i \in N} \Delta(A_i)$ be a mixed strategy profile.

The expected utility of α for player i is

$$U_i(\alpha) = U_i\left((\alpha_j)_{j \in N}\right) := \sum_{a \in A} p_\alpha(a) \ u_i(a) = \sum_{a \in A} \left(\prod_{j \in N} \alpha_j(a_j)\right) u_i(a).$$

Mixed Strategies Definitions

Support Lemma

Nash's Theorem

Correlated Equilibria

Summary

Example (Mixed strategies for matching pennies (ctd.))

The expected utilities for player 1 and player 2 are

$$U_1(\alpha_1, \alpha_2) = -1/9$$

and

$$U_2(\alpha_1, \alpha_2) = +1/9.$$

Expected Utility

Remark: The expected utility functions U_i are linear in all mixed strategies.

Proposition

Let $\alpha \in \prod_{i \in N} \Delta(A_i)$ be a mixed strategy profile, $\beta_i, \gamma_i \in \Delta(A_i)$ mixed strategies, and $\lambda \in [0, 1]$. Then

$$U_i(\alpha_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)=\lambda U_i(\alpha_{-i},\beta_i)+(1-\lambda)U_i(\alpha_{-i},\gamma_i).$$

Moreover,

$$U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) \cdot U_i(\alpha_{-i}, a_i)$$

Proof.

Homework.

Nash's Theorem

Correlated

Summarv

Definition (Mixed extension)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

The mixed extension of G is the game $\langle N, (\Delta(A_i))_{i \in N}, (U_i)_{i \in N} \rangle$ where

- lacktriangle $\Delta(A_i)$ is the set of probability distributions over A_i and
- $U_i: \prod_{j\in N} \Delta(A_j) \to \mathbb{R}$ assigns to each mixed strategy profile α the expected utility for player i according to the induced probability distribution p_{α} .

Mixed Strategies

Support Lemm

Nash's Theorem

Correlated Equilibria

Nash Equilibria in Mixed Strategies

Nived Mixed

Definition (Nash equilibrium in mixed strategies)

Let G be a strategic game.

A Nash equilibrium in mixed strategies (or mixed-strategy Nash equilibrium) of *G* is a Nash equilibrium in the mixed extension of *G*.

Mixed Strategies Definitions

Nash's Theorem

Correlated

Support

Intuition:

- It does not make sense to assign positive probability to a pure strategy that is not a best response to what the other players do.
- Claim: A profile of mixed strategies α is a Nash equilibrium if and only if everyone only plays best pure responses to what the others play.

Definition (Support)

Let α_i be a mixed strategy.

The support of α_i is the set

$$supp(\alpha_i) = \{a_i \in A_i \mid \alpha_i(a_i) > 0\}$$

of actions played with nonzero probability.

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

UNI FREIB

Lemma (Support lemma)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a finite strategic game.

Then $\alpha^* \in \prod_{i \in N} \Delta(A_i)$ is a mixed-strategy Nash equilibrium in G if and only if for every player $i \in N$, every pure strategy in the support of α_i^* is a best response to α_{-i}^* .

For a single player–given all other players stick to their mixed strategies–it does not make a difference whether he plays the mixed strategy or whether he plays any single pure strategy from the support of the mixed strategy.

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated

NE NE

Example (Support lemma)

Matching pennies, strategy profile $\alpha = (\alpha_1, \alpha_2)$ with

$$\alpha_1(H) = 2/3$$
, $\alpha_1(T) = 1/3$, $\alpha_2(H) = 1/3$, and $\alpha_2(T) = 2/3$.

For α to be a Nash equilibrium, both actions in $supp(\alpha_2) = \{H, T\}$ have to be best responses to α_1 . Are they?

$$U_{2}(\alpha_{1}, H) = \alpha_{1}(H) \cdot u_{2}(H, H) + \alpha_{1}(T) \cdot u_{2}(T, H)$$

$$= \frac{2}{3} \cdot (-1) + \frac{1}{3} \cdot (+1) = -\frac{1}{3},$$

$$U_{2}(\alpha_{1}, T) = \alpha_{1}(H) \cdot u_{2}(H, T) + \alpha_{1}(T) \cdot u_{2}(T, T)$$

$$= \frac{2}{3} \cdot (+1) + \frac{1}{3} \cdot (-1) = \frac{1}{3}.$$

 $\Rightarrow H \in supp(\alpha_2), \text{ but } H \notin B_2(\alpha_1).$ Support lemma $\Rightarrow \alpha \text{ can not be a Nash equilibrium.}$

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Proof.

" \Rightarrow ": Let α^* be a Nash equilibrium with $a_i \in supp(\alpha_i^*)$.

Assume that a_i is not a best response to α_{-i}^* . Because U_i is linear, player i can improve his utility by shifting probability in α_i^* from a_i to a better response.

This makes the modified α_i^* a better response than the original α_i^* , i. e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.

Strategies

Definitions

Support Lemma

Nash's Theorem

Correlated Equilibria

Proof.

" \Rightarrow ": Let α^* be a Nash equilibrium with $a_i \in supp(\alpha_i^*)$.

Assume that a_i is not a best response to α_{-i}^* . Because U_i is linear, player i can improve his utility by shifting probability in α_i^* from a_i to a better response.

This makes the modified α_i^* a better response than the original α_i^* , i. e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.

Strategies
Definitions
Support Lemma

Nash's Theorem

Correlated

UNI FREIB

Proof.

"⇒": Let α^* be a Nash equilibrium with $a_i \in supp(\alpha_i^*)$.

Assume that a_i is not a best response to α_{-i}^* . Because U_i is linear, player i can improve his utility by shifting probability in α_i^* from a_i to a better response.

This makes the modified α_i^* a better response than the original α_i^* , i. e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.

Strategies

Definitions
Support Lemma

Nash's Theorem

Correlated Equilibria

Proof (ctd.)

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a_i' \in supp(\alpha_i')$ that has higher utility than some pure strategy $a_i'' \in supp(\alpha_i^*)$.

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α_i^* .

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Proof (ctd.)

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a'_i \in supp(\alpha'_i)$ that has higher utility than some pure strategy $a''_i \in supp(\alpha^*_i)$.

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α^* .

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Proof (ctd.)

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a_i' \in supp(\alpha_i')$ that has higher utility than some pure strategy $a_i'' \in supp(\alpha_i^*)$.

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α^* .

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Proof (ctd.)

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a_i' \in supp(\alpha_i')$ that has higher utility than some pure strategy $a_i'' \in supp(\alpha_i^*)$.

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α_{-i}^* .

Nash's

Correlated Equilibria

Computing Mixed-Strategy Nash Equilibria

Example (Mixed-strategy Nash equilibria in BoS)

	В	S
В	2,1	0,0
S	0,0	1,2

We already know: (B,B) and (S,S) are pure Nash equilibria. Possible supports (excluding "pure-vs-pure" strategies) are:

$$\{B\} \text{ vs. } \{B,S\}, \quad \{S\} \text{ vs. } \{B,S\}, \quad \{B,S\} \text{ vs. } \{B\}, \\ \{B,S\} \text{ vs. } \{S\} \qquad \text{and} \qquad \{B,S\} \text{ vs. } \{B,S\}$$

Observation: In Bach or Stravinsky, pure strategies have unique best responses. Therefore, there can be no Nash equilibria of "pure-vs-strictly-mixed" type.

Strategies
Definitions
Support Lemma

Nash's Theorem

Correlated Equilibria

Example (Mixed-strategy Nash equilibria in BoS (ctd.))

Consequence: Only need to search for additional Nash equilibria with support sets $\{B,S\}$ vs. $\{B,S\}$. Assume that (α_1^*,α_2^*) is a Nash equilibrium with $0<\alpha_1^*(B)<1$ and $0<\alpha_2^*(B)<1$. Then

$$U_{1}(B, \alpha_{2}^{*}) = U_{1}(S, \alpha_{2}^{*})$$

$$\Rightarrow 2 \cdot \alpha_{2}^{*}(B) + 0 \cdot \alpha_{2}^{*}(S) = 0 \cdot \alpha_{2}^{*}(B) + 1 \cdot \alpha_{2}^{*}(S)$$

$$\Rightarrow 2 \cdot \alpha_{2}^{*}(B) = 1 - \alpha_{2}^{*}(B)$$

$$\Rightarrow 3 \cdot \alpha_{2}^{*}(B) = 1$$

$$\Rightarrow \alpha_{2}^{*}(B) = \frac{1}{3} \text{ (and } \alpha_{2}^{*}(S) = \frac{2}{3})$$

Similarly, we get $\alpha_1^*(B) = 2/3$ and $\alpha_1^*(S) = 1/3$. The payoff profile of this equilibrium is (2/3, 2/3). Mixed Strategies

Support Lemma
Nash's
Theorem

Correlated

NE NE

Remark

Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T,B\}$ and $A_2 = \{L,R\}$ be a two-player game with two actions each, and (T,α_2^*) with $0 < \alpha_2^*(L) < 1$ be a Nash equilibrium of G.

Then at least one of the profiles (T,L) and (T,R) is also a Nash equilibrium of G.

Reason: Both L and R are best responses to T. Assume that T was neither a best response to L nor to R. Then B would be a better response than T both to L and to R.

With the linearity of U_1 , B would also be a better response to α_2^* than T is. Contradiction.

Strategies

Definitions

Support Lemma

Nash's Theorem

Correlated Equilibria

NE NE

Remark

Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T,B\}$ and $A_2 = \{L,R\}$ be a two-player game with two actions each, and (T,α_2^*) with $0 < \alpha_2^*(L) < 1$ be a Nash equilibrium of G.

Then at least one of the profiles (T,L) and (T,R) is also a Nash equilibrium of G.

Reason: Both L and R are best responses to T. Assume that T was neither a best response to L nor to R. Then B would be a better response than T both to L and to R.

With the linearity of U_1 , B would also be a better response to α_2^* than T is. Contradiction.

Nash's Theorem

Correlated Equilibria

NE NE

Remark

Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T,B\}$ and $A_2 = \{L,R\}$ be a two-player game with two actions each, and (T,α_2^*) with $0 < \alpha_2^*(L) < 1$ be a Nash equilibrium of G.

Then at least one of the profiles (T,L) and (T,R) is also a Nash equilibrium of G.

Reason: Both L and R are best responses to T. Assume that T was neither a best response to L nor to R. Then B would be a better response than T both to L and to R.

With the linearity of U_1 , B would also be a better response to α_2^* than T is. Contradiction.

Strategies
Definitions
Support Lemma

Nash's Theorem

Correlated Equilibria

Example

Consider the Nash equilibrium $\alpha^* = (\alpha_1^*, \alpha_2^*)$ with

$$\alpha_1^*(T) = 1$$
, $\alpha_1^*(B) = 0$, $\alpha_2^*(L) = \frac{1}{10}$, $\alpha_2^*(R) = \frac{9}{10}$

in the following game:

	L	R
Т	1, 1	1, 1
В	2, 2	-5, -5

Here, (T,R) is also a Nash equilibrium.

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

FREIBL

Mixed Strategies

Nash's Theorem

Definitions

Theorem

Proof of Nash Theorem

Correlated Equilibria

Summary

Nash's Theorem

Nash's Theorem

Motivation: When does a strategic game have a mixed-strategy Nash equilibrium?

In the previous chapter, we discussed necessary and sufficient conditions for the existence of Nash equilibria for the special case of zero-sum games. Can we make other claims? Mixed Strategies

Nash's Theorem

Definitions

Theorem

O

Equilibria

Theorem (Nash's theorem)

Every finite strategic game has a mixed-strategy Nash equilibrium.

Proof sketch.

Consider the set-valued function of best responses $B: \mathbb{R}^{\sum_i |A_i|} \to 2^{\mathbb{R}^{\sum_i |A_i|}}$ with

$$B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i}).$$

A mixed strategy profile α is a fixed point of B if and only if $\alpha \in B(\alpha)$ if and only if α is a mixed-strategy Nash equilibrium. The graph of B has to be connected. Then there is at least one point on the fixpoint diagonal.

Outline for the formal proof:

- Review of necessary mathematical definitions
 - → Subsection "Definitions"
- Statement of a fixpoint theorem used to prove Nash's theorem (without proof)
 - Subsection "Kakutani's Fixpoint Theorem"
- Proof of Nash's theorem using fixpoint theorem
 - Subsection "Proof of Nash's Theorem"

Mixed Strategies

Nash's Theorem

Definitions

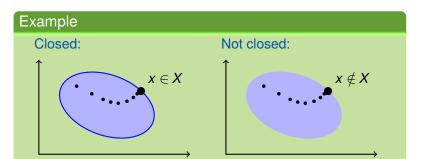
Kakutani's Fixpo Theorem

Proof of Nash's Theorem

Correlated Equilibria

Definition

A set $X \subseteq \mathbb{R}^n$ is closed if X contains all its limit points, i. e., if $(x_k)_{k \in \mathbb{N}}$ is a sequence of elements in X and $\lim_{k \to \infty} x_k = x$, then also $x \in X$.



Mixed Strategies

Nash's Theorem

Definitions

Kakutani's Fixpo Theorem

Correlated

Nash's Theorem

Definitions

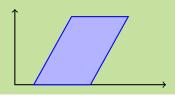
Definition

A set $X \subseteq \mathbb{R}^n$ is bounded if for each i = 1, ..., n there are lower and upper bounds $a_i, b_i \in \mathbb{R}$ such that

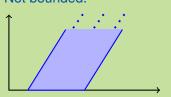
$$X \subseteq \prod_{i=1}^n [a_i,b_i].$$

Example

Bounded:



Not bounded:



Mixed

Nash's Theorem

Definitions

Kakutani's Fixpoin Theorem

Correlated

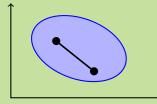
Definition

A set $X \subseteq \mathbb{R}^n$ is convex if for all $x, y \in X$ and all $\lambda \in [0, 1]$,

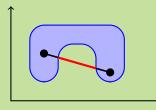
$$\lambda x + (1 - \lambda)y \in X$$
.

Example

Convex:



Not convex:



Mixed Strategie

Nash's Theorem

Definitions

Theorem
Proof of Nash's
Theorem

Correlated Equilibria

Nash's Theorem

Definitions

H.

Mixed Strategies

Nash's Theorem

Definitions

Kakutani's Fixpoin Theorem

Proof of Nash's Theorem

Correlated Equilibria

Summary

Definition

For a function $f: X \to 2^X$, the graph of f is the set

Graph(
$$f$$
) = {(x , y) | $x \in X$, $y \in f(x)$ }.

Theorem (Kakutani's fixpoint theorem)

Let $X \subseteq \mathbb{R}^n$ be a nonempty, closed, bounded and convex set and let $f: X \to 2^X$ be a function such that

- for all $x \in X$, the set $f(x) \subseteq X$ is nonempty and convex, and
- Graph(f) is closed.

Then there is an $x \in X$ with $x \in f(x)$, i. e., f has a fixpoint.

Proof.

See Shizuo Kakutani, A generalization of Brouwer's fixed point theorem, 1941, or your favorite advanced calculus textbook, or the Internet.

For German speakers: Harro Heuser, Lehrbuch der Analysis, Teil 2, also has a proof (Abschnitt 232).

Mixed Strategies

Nash's Theorem

Kakutani's Fixpoint Theorem

Correlated Equilibria

Nash's Theorem

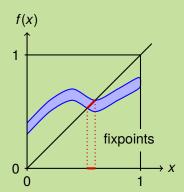
Kakutani's Fixpoint Theorem

NE SE

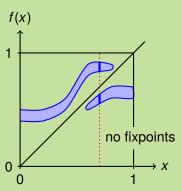
Example

Let X = [0, 1].

Kakutani's theorem applicable:



Kakutani's theorem not applicable:



Mixed Strategie

Nash's Theorem

> Kakutani's Fixpoint Theorem

Proof of Nash's Theorem

Correlated Equilibria

Proof.

Apply Kakutani's fixpoint theorem using $X = \mathcal{A} = \prod_{i \in N} \Delta(A_i)$ and f = B, where $B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i})$.

We have to show:

- 2 \(\alpha \) is closed,
- 3 A is bounded,
- 4 s convex,
- **5** $B(\alpha)$ is nonempty for all $\alpha \in \mathcal{A}$,
- $oxed{6} B(\alpha)$ is convex for all $\alpha \in \mathscr{A}$, and
- Graph(B) is closed.

Mixed Strategie

Nash's Theorem

Kakutani's Fixpoi

Proof of Nash's

Correlated Equilibria

Some notation:

- Assume without loss of generality that $N = \{1, ..., n\}$.
- A profile of mixed strategies can be written as a vector of $M = \sum_{i \in N} |A_i|$ real numbers in the interval [0, 1] such that numbers for the same player add up to 1.

For example, $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_1(T) = 0.7$, $\alpha_1(M) = 0.0$, $\alpha_1(B) = 0.3$, $\alpha_2(L) = 0.4$, $\alpha_2(R) = 0.6$ can be seen as the vector

$$(\underbrace{0.7,\ 0.0,\ 0.3}_{\alpha_1},\ \underbrace{0.4,\ 0.6}_{\alpha_2})$$

This allows us to interpret the set \mathscr{A} of mixed strategy profiles as a subset of \mathbb{R}^M .

Mixed Strategie

Theorem Definitions

Proof of Nash's

Correlated

1 nonempty: Trivial. ontains the tuple

$$(1, \underbrace{0, \dots, 0}_{|A_1|-1 \text{ times}}, \dots, 1, \underbrace{0, \dots, 0}_{|A_n|-1 \text{ times}}).$$

2 \mathscr{A} closed: Let $\alpha_1, \alpha_2, \ldots$ be a sequence in \mathscr{A} that converges to $\lim_{k\to\infty}\alpha_k=\alpha$. Suppose $\alpha\notin\mathscr{A}$. Then either there is some component of α that is less than zero or greater than one, or the components for some player i add up to a value other than one.

Since α is a limit point, the same must hold for some α_k in the sequence. But then, $\alpha_k \notin \mathcal{A}$, a contradiction. Hence \mathcal{A} is closed.

Nash's

Definitions

Kakutani's Fixpoi Theorem

Proof of Nash's Theorem

Correlated Equilibria

1 nonempty: Trivial. oontains the tuple

$$(1, \underbrace{0, \dots, 0}_{|A_1|-1 \text{ times}}, \dots, 1, \underbrace{0, \dots, 0}_{|A_n|-1 \text{ times}}).$$

2 \mathscr{A} closed: Let $\alpha_1, \alpha_2, \ldots$ be a sequence in \mathscr{A} that converges to $\lim_{k\to\infty}\alpha_k=\alpha$. Suppose $\alpha\notin\mathscr{A}$. Then either there is some component of α that is less than zero or greater than one, or the components for some player i add up to a value other than one.

Since α is a limit point, the same must hold for some α_k in the sequence. But then, $\alpha_k \notin \mathcal{A}$, a contradiction. Hence \mathscr{A} is closed.

 \mathcal{A} nonempty: Trivial. \mathcal{A} contains the tuple

$$(1, \underbrace{0, \dots, 0}_{|A_1|-1 \text{ times}}, \dots, 1, \underbrace{0, \dots, 0}_{|A_n|-1 \text{ times}}).$$

2 \mathscr{A} closed: Let $\alpha_1, \alpha_2, \ldots$ be a sequence in \mathscr{A} that converges to $\lim_{k\to\infty}\alpha_k=\alpha$. Suppose $\alpha\notin\mathscr{A}$. Then either there is some component of α that is less than zero or greater than one, or the components for some player i add up to a value other than one.

Since α is a limit point, the same must hold for some α_k in the sequence. But then, $\alpha_k \notin \mathcal{A}$, a contradiction. Hence \mathscr{A} is closed.

Nash's

Proof of Nash's Theorem

- 3 \mathscr{A} bounded: Trivial. All entries are between 0 and 1, i. e., \mathscr{A} is bounded by $[0,1]^M$.
- \mathscr{A} convex: Let $\alpha, \beta \in \mathscr{A}$ and $\lambda \in [0,1]$, and consider $\gamma = \lambda \alpha + (1-\lambda)\beta$. Then

$$\min(\gamma) = \min(\lambda \alpha + (1 - \lambda)\beta)$$

$$\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta)$$

$$\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,$$

and similarly, $max(\gamma) \le 1$.

Mixed Strategie

Nash's Theorem

Kakutani's Fixpoir Theorem Proof of Nash's

Theorem Correlated

NE NE

Proof (ctd.)

- 3 \mathscr{A} bounded: Trivial. All entries are between 0 and 1, i. e., \mathscr{A} is bounded by $[0,1]^M$.
- 4 \mathscr{A} convex: Let $\alpha, \beta \in \mathscr{A}$ and $\lambda \in [0, 1]$, and consider $\gamma = \lambda \alpha + (1 \lambda)\beta$. Then

$$\min(\gamma) = \min(\lambda \alpha + (1 - \lambda)\beta)$$

$$\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta)$$

$$\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,$$

and similarly, max(γ) \leq 1. Hence, all entries in γ are still in [0, 1]. Mixed Strategie

Nash's Theorem

Kakutani's Fixpoir

Proof of Nash's Theorem

Correlated Equilibria

- 3 \mathscr{A} bounded: Trivial. All entries are between 0 and 1, i. e., \mathscr{A} is bounded by $[0,1]^M$.
- 4 \mathscr{A} convex: Let $\alpha, \beta \in \mathscr{A}$ and $\lambda \in [0, 1]$, and consider $\gamma = \lambda \alpha + (1 \lambda)\beta$. Then

$$\min(\gamma) = \min(\lambda \alpha + (1 - \lambda)\beta)$$

$$\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta)$$

$$\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,$$

and similarly, $max(\gamma) \leq 1$.

Hence, all entries in γ are still in [0, 1].

Nash's Theorem

Theorem

Proof of Nash's

Theorem

Summary

- $\ensuremath{\mathfrak{I}}$ bounded: Trivial. All entries are between 0 and 1, i. e., $\ensuremath{\mathscr{A}}$ is bounded by $[0,1]^M$.
- ✓ convex: Let $\alpha, \beta \in \mathscr{A}$ and $\lambda \in [0, 1]$, and consider $\gamma = \lambda \alpha + (1 \lambda)\beta$. Then

$$\min(\gamma) = \min(\lambda \alpha + (1 - \lambda)\beta)$$

$$\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta)$$

$$\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,$$

and similarly, $max(\gamma) \leq 1$.

Hence, all entries in γ are still in [0, 1].

4 \mathscr{A} convex (ctd.): Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be the sections of α , β and γ , respectively, that determine the probability distribution for player i. Then

$$\sum \tilde{\gamma} = \sum (\lambda \, \tilde{\alpha} + (1 - \lambda) \, \tilde{\beta})$$

$$= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$$

$$= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.$$

Hence, all probabilities for player i in γ still sum up to 1. Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex. Mixed Strategies

Nash's Theorem

Kakutani's Fixpoi

Proof of Nash's Theorem

Correlated Equilibria

4 \mathscr{A} convex (ctd.): Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be the sections of α , β and γ , respectively, that determine the probability distribution for player i. Then

$$\sum \tilde{\gamma} = \sum (\lambda \, \tilde{\alpha} + (1 - \lambda) \, \tilde{\beta})$$

$$= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$$

$$= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.$$

Hence, all probabilities for player i in γ still sum up to 1. Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex.

Mixed Strategie

Nash's Theorem

Kakutani's Fixpoir

Proof of Nash's Theorem

Correlated Equilibria

4 \mathscr{A} convex (ctd.): Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be the sections of α , β and γ , respectively, that determine the probability distribution for player i. Then

$$\sum \tilde{\gamma} = \sum (\lambda \, \tilde{\alpha} + (1 - \lambda) \, \tilde{\beta})$$

$$= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$$

$$= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.$$

Hence, all probabilities for player i in γ still sum up to 1.

Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex.

Mixed Strategie

Nash's Theorem

Kakutani's Fixpoin

Proof of Nash's Theorem

Correlated Equilibria

4 \mathscr{A} convex (ctd.): Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be the sections of α , β and γ , respectively, that determine the probability distribution for player i. Then

$$\sum \tilde{\gamma} = \sum (\lambda \, \tilde{\alpha} + (1 - \lambda) \, \tilde{\beta})$$

$$= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$$

$$= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.$$

Hence, all probabilities for player i in γ still sum up to 1. Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex.

Mixed Strategies

Nash's Theorem

Kakutani's Fixpoir Theorem

Proof of Nash's Theorem

Equilibria

5 $B(\alpha)$ nonempty: For a fixed α_{-i} , U_i is linear in the mixed strategies of player i, i. e., for β_i , γ_i ∈ $\Delta(A_i)$,

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i}) = \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$
(1)

for all $\lambda \in [0, 1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continuous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in N$, and thus $B(\alpha) \neq \emptyset$.

Nash's Theorem

Kakutani's Fixpo

Proof of Nash's Theorem

Correlated Equilibria

5 $B(\alpha)$ nonempty: For a fixed α_{-i} , U_i is linear in the mixed strategies of player i, i. e., for β_i , γ_i ∈ $\Delta(A_i)$,

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i}) = \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$
(1)

for all $\lambda \in [0, 1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continuous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in N$, and thus $B(\alpha) \neq \emptyset$.

Nash's Theorem

Kakutani's Fixpo

Proof of Nash's Theorem

Correlated Equilibria

5 $B(\alpha)$ nonempty: For a fixed α_{-i} , U_i is linear in the mixed strategies of player i, i. e., for β_i , γ_i ∈ $\Delta(A_i)$,

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i}) = \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$
(1)

for all $\lambda \in [0, 1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continuous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in N$, and thus $B(\alpha) \neq \emptyset$.

Nash's Theorem

Theorem

Proof of Nash's Theorem

Equilibria

5 $B(\alpha)$ nonempty: For a fixed α_{-i} , U_i is linear in the mixed strategies of player i, i. e., for β_i , γ_i ∈ $\Delta(A_i)$,

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i}) = \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$
(1)

for all $\lambda \in [0, 1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in N$, and thus $B(\alpha) \neq \emptyset$.

Mixed Strategie

Nash's Theorem

Kakutani's Fixpo Theorem

Proof of Nash's Theorem

Correlated Equilibria

 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha_i', \alpha_i'' \in B_i(\alpha_{-i})$.

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Nash's

Proof of Nash's Theorem

 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha_i', \alpha_i'' \in B_i(\alpha_{-i})$.

Then
$$U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$$
.

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

So,
$$\alpha^k, \beta^k, \alpha, \beta \in \prod_{i \in N} \Delta(A_i)$$
 and $\beta^k \in B(\alpha^k)$.

Nash's

Proof of Nash's Theorem

 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha_i', \alpha_i'' \in B_i(\alpha_{-i})$.

Then $U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$.

With Equation (1), this implies

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Hence, $B_i(\alpha_{-i})$ is convex.

Nash's

Proof of Nash's Theorem

6 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha'_i, \alpha''_i ∈ B_i(\alpha_{-i})$.

Then $U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$.

With Equation (1), this implies

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Hence, $B_i(\alpha_{-i})$ is convex.

7 *Graph*(*B*) closed: Let (α^k, β^k) be a convergent sequence in *Graph*(*B*) with lim_{k→∞} (α^k, β^k) = (α, β) .

So, $\alpha^{\kappa}, \beta^{\kappa}, \alpha, \beta \in \prod_{i \in N} \Delta(A_i)$ and $\beta^{\kappa} \in B(\alpha^{\kappa})$. We need to show that $(\alpha, \beta) \in Graph(B)$, i. e., that $\beta \in B(\alpha)$. Mixed Strategie

Nash's Theorem

Kakutani's Fixpoi

Proof of Nash's Theorem

Correlated Equilibria

6 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha'_i, \alpha''_i ∈ B_i(\alpha_{-i})$.

Then $U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$.

With Equation (1), this implies

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Hence, $B_i(\alpha_{-i})$ is convex.

7 *Graph(B)* closed: Let (α^k, β^k) be a convergent sequence in Graph(B) with $\lim_{k\to\infty}(\alpha^k, \beta^k) = (\alpha, \beta)$. So, $\alpha^k, \beta^k, \alpha, \beta \in \prod_{i\in N}\Delta(A_i)$ and $\beta^k \in B(\alpha^k)$.

We need to show that $(\alpha, \beta) \in Graph(B)$, i. e., that

Strategie

Definitions

Proof of Nash's

Correlated

Equilibria

6 $B(\alpha)$ convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha'_i, \alpha''_i ∈ B_i(\alpha_{-i})$.

Then
$$U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$$
.

With Equation (1), this implies

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Hence, $B_i(\alpha_{-i})$ is convex.

7 *Graph*(*B*) closed: Let (α^k, β^k) be a convergent sequence in Graph(B) with $\lim_{k\to\infty}(\alpha^k, \beta^k) = (\alpha, \beta)$. So, $\alpha^k, \beta^k, \alpha, \beta \in \prod_{i\in N}\Delta(A_i)$ and $\beta^k \in B(\alpha^k)$.

We need to show that $(\alpha, \beta) \in Graph(B)$, i. e., that $\beta \in B(\alpha)$.

Mixed Strategie

Theorem

Kakutani's Fixpoi

Proof of Nash's

Correlated Equilibria

Graph(B) closed (ctd.): It holds for all $i \in N$:

$$U_{i}(\alpha_{-i}, \beta_{i}) \stackrel{\text{(D)}}{=} U_{i}(\lim_{k \to \infty} (\alpha_{-i}^{k}, \beta_{i}^{k}))$$

$$\stackrel{\text{(C)}}{=} \lim_{k \to \infty} U_{i}(\alpha_{-i}^{k}, \beta_{i}^{k})$$

$$\overset{ ext{(B)}}{\geq} \lim_{k o \infty} U_iig(lpha_{-i}^k,eta_i'ig) \quad ext{ for all } eta_i' \in \Delta(A_i)$$

$$\stackrel{\text{(C)}}{=} U_i \big(\lim_{k \to \infty} \alpha_{-i}^k, \beta_i' \big) \quad \text{ for all } \beta_i' \in \Delta(A_i)$$

$$\stackrel{\text{(D)}}{=} U_i \big(\alpha_{-i}, \beta_i' \big) \quad \text{ for all } \beta_i' \in \Delta(A_i).$$

(D): def. α_i , β_i ; (C) continuity; (B) β_i^k best response to α_{-i}^k .

Nash's

Proof of Nash's Theorem

7 *Graph*(B) closed (ctd.): It follows that β_i is a best response to α_{-i} for all $i \in N$.

Thus, $\beta \in B(\alpha)$ and finally $(\alpha, \beta) \in Graph(B)$.

Therefore, all requirements of Kakutani's fixpoint theorem are satisfied.

Applying Kakutani's theorem establishes the existence of a fixpoint of *B*, which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

Mixed Strategies

Nash's Theorem

Kakutani'e Eivnoi

Proof of Nash's

Correlated Equilibria

7 *Graph*(*B*) closed (ctd.): It follows that $β_i$ is a best response to $α_{-i}$ for all i ∈ N.

Thus, $\beta \in B(\alpha)$ and finally $(\alpha, \beta) \in Graph(B)$.

Therefore, all requirements of Kakutani's fixpoint theorem are satisfied.

Applying Kakutani's theorem establishes the existence of a fixpoint of B, which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

Mixed Strategies

Nash's Theorem

Definitions

Proof of Nash's

Correlated Equilibria

NE SE

Proof (ctd.)

Graph(B) closed (ctd.): It follows that β_i is a best response to α_{-i} for all $i \in N$.

Thus, $\beta \in B(\alpha)$ and finally $(\alpha, \beta) \in Graph(B)$.

Therefore, all requirements of Kakutani's fixpoint theorem are satisfied.

Applying Kakutani's theorem establishes the existence of a fixpoint of *B*, which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

Mixed Strategies

Nash's Theorem

Definitions

Proof of Nash's

Correlated Equilibria

Mixed Mixed

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Summary

Correlated Equilibria

Correlated Equilibria

ERES

Recall: There are three Nash equilibria in Bach or Stravinsky

- \blacksquare (B,B) with payoff profile (2,1)
- \blacksquare (S,S) with payoff profile (1,2)
- \blacksquare (α_1^*, α_2^*) with payoff profile (2/3, 2/3) where

$$\alpha_1^*(B) = 2/3, \ \alpha_1^*(S) = 1/3,$$

$$\alpha_2^*(B) = 1/3, \ \alpha_2^*(S) = 2/3.$$

Idea: Use a publicly visible coin toss to decide which action from a mixed strategy is played. This can lead to higher payoffs.

Strategie

Theorem

Correlated Equilibria

Example (Correlated equilibrium in BoS)

With a fair coin that both players can observe, the players can agree to play as follows:

- If the coin shows heads, both play B.
- If the coin shows tails, both play S.

This is stable in the sense that no player has an incentive to deviate from this agreed-upon rule, as long as the other player keeps playing his/her strategy (cf. definition of Nash equilibria).

Expected payoffs: (3/2, 3/2) instead of (2/3, 2/3).

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathcal{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik}\}$. This means that $\bigcup_{j=1}^{j=ik} P_j = \Omega$ and for all $P_i, P_k \in \mathcal{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed

Nash's Theorem

Correlated Equilibria

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathcal{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik}\}$. This means that $\bigcup_{j=1}^{i=ik} P_j = \Omega$ and for all $P_i, P_k \in \mathcal{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed

Nash's Theorem

Correlated Equilibria

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathcal{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik}\}$. This means that $\bigcup_{j=1}^{i=ik} P_j = \Omega$ and for all $P_i, P_k \in \mathcal{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathcal{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed

Nash's Theorem

Correlated Equilibria

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathcal{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik}\}$. This means that $\bigcup_{j=1}^{i=ik} P_j = \Omega$ and for all $P_i, P_k \in \mathcal{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed

Nash's Theorem

Correlated Equilibria

Observations and Information Partitions

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathscr{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik}\}$. This means that $\bigcup_{j=1}^{j=ik} P_j = \Omega$ and for all $P_i, P_k \in \mathscr{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed

Nash's Theorem

Correlated Equilibria

Definition

A correlated equilibrium of a strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ consists of

- \blacksquare a finite probability space (Ω, π) ,
- for each player $i \in N$ an information partition \mathcal{P}_i of Ω ,
- for each player $i \in N$ a function $\sigma_i : \Omega \to A_i$ that respects \mathscr{P}_i (σ_i is player i's strategy)

such that for every $i \in N$ and every function $\tau_i : \Omega \to A_i$ that respects \mathscr{P}_i (i.e. for every possible strategy of player i) we have

$$\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega)). \tag{2}$$

Mixed Strategie

Nash's Theorem

Correlated Equilibria

	L	R
T	6,6	2,7
В	7,2	0,0

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4\frac{2}{3},4\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$
Set $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R$

Mixed

	L	R
Т	6,6	2,7
В	7,2	0,0

Strategies

Nash's Theorem

> Correlated Equilibria

> > Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4\frac{2}{3},4\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$
Set $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R$

	L	R
Т	6,6	2,7
В	7,2	0,0

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4\frac{2}{3},4\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathscr{P}_1 = \{\{x\}, \{y, z\}\}, \mathscr{P}_2 = \{\{x, y\}, \{z\}\}.$

Set
$$\sigma_1(x) = B$$
, $\sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L$, $\sigma_2(z) = R$.

	L	R
Т	6,6	2,7
В	7,2	0,0

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4\frac{2}{3},4\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathscr{P}_1 = \{\{x\}, \{y, z\}\}, \mathscr{P}_2 = \{\{x, y\}, \{z\}\}.$
Set $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R.$

	L	R
Τ	6,6	2,7
В	7,2	0,0

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4\frac{2}{3},4\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathscr{P}_1 = \{\{x\}, \{y, z\}\}, \mathscr{P}_2 = \{\{x, y\}, \{z\}\}.$
Set $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R.$

Connection to Nash Equilibria

Proposition

For every mixed strategy Nash equilibrium α of a finite strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$, there is a correlated equilibrium $\langle (\Omega, \pi), (\mathcal{P}_i), (\sigma_i) \rangle$ in which for each player i the distribution on A_i induced by σ_i is α_i .

This means that correlated equilibria are a generalization of Nash equilibria.

Correlated Equilibria

2E

Proof.

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathcal{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega, \pi), (\mathscr{P}_i), (\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i .

Mixed Strategies

Nash's Theorem

Correlated Equilibria

ZE ZE

Proof.

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathscr{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega, \pi), (\mathscr{P}_i), (\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i .

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathscr{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega, \pi), (\mathscr{P}_i), (\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i .

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathscr{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega, \pi), (\mathscr{P}_i), (\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i .

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Proposition

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game. Any convex combination of correlated equilibrium payoff profiles of G is a correlated equilibrium payoff profile of G.

Proof idea: From given equilibria and weighting factors, create a new one by combining them orthogonally, using the weighting factors.

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Let u^1, \ldots, u^K be the payoff profiles and let $(\lambda^1, \ldots, \lambda^K) \in \mathbb{R}^K$ with $\lambda^l \geq 0$ and $\sum_{l=1}^K \lambda^l = 1$. For each l let $\langle (\Omega^l, \pi^l), (\mathscr{P}^l), (\mathscr{P}^l) \rangle$

be a correlated equilibrium generating payoff u^l . Wlog. assume all Ω^l 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{P}_i = \bigcup_l \mathscr{P}_i^l$ and set $\sigma_i(\omega) = \sigma_i^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Nash's Theorem

> Correlated Equilibria

EEE BE

Proof.

Let u^1, \ldots, u^K be the payoff profiles and let $(\lambda^1, \ldots, \lambda^K) \in \mathbb{R}^K$ with $\lambda^l \geq 0$ and $\sum_{l=1}^K \lambda^l = 1$. For each l let $\langle (\Omega^l, \pi^l), (\mathscr{P}_i^l), (\sigma_i^l) \rangle$

be a correlated equilibrium generating payoff u^{l} . Wlog. assume all Ω^{l} 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{P}_i = \bigcup_l \mathscr{P}_i^l$ and set $\sigma_i(\omega) = \sigma_i^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Nash's Theorem

> Correlated Equilibria

L R E B

Proof.

Let u^1, \ldots, u^K be the payoff profiles and let $(\lambda^1, \ldots, \lambda^K) \in \mathbb{R}^K$ with $\lambda^l \geq 0$ and $\sum_{l=1}^K \lambda^l = 1$. For each l let $\langle (\Omega^l, \pi^l), (\mathscr{P}_l^l), (\sigma_l^l) \rangle$

be a correlated equilibrium generating payoff u^{l} . Wlog. assume all Ω^{l} 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{D}_l = \bigcup_l \mathscr{D}_l^l$ and set $\sigma_l(\omega) = \sigma_l^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Nash's Theorem

> Correlated Equilibria

Let u^1,\ldots,u^K be the payoff profiles and let $(\lambda^1,\ldots,\lambda^K)\in\mathbb{R}^K$ with $\lambda^I\geq 0$ and $\sum_{l=1}^K\lambda^l=1$. For each I let $\langle(\Omega^I,\pi^I),(\mathscr{P}_i^I),(\sigma_i^J)\rangle$

be a correlated equilibrium generating payoff u^{l} . Wlog. assume all Ω^{l} 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{D}_l = \bigcup_l \mathscr{D}_l^l$ and set $\sigma_l(\omega) = \sigma_l^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Theorem

Correlated Equilibria

UN EREB

Proof.

Let u^1, \ldots, u^K be the payoff profiles and let $(\lambda^1, \ldots, \lambda^K) \in \mathbb{R}^K$ with $\lambda^l \geq 0$ and $\sum_{l=1}^K \lambda^l = 1$. For each l let $\langle (\Omega^l, \pi^l), (\mathscr{P}_i^l), (\sigma_i^l) \rangle$

be a correlated equilibrium generating payoff u^{l} . Wlog. assume all Ω^{l} 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_I \Omega^I$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^I \pi^I(\omega)$ where I is such that $\omega \in \Omega^I$. For each $i \in N$ let $\mathscr{P}_i = \bigcup_I \mathscr{P}_i^I$ and set $\sigma_i(\omega) = \sigma_i^I(\omega)$ where I is such that $\omega \in \Omega^I$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Theorem

Correlated Equilibria

E E E

Proof.

Let u^1,\ldots,u^K be the payoff profiles and let $(\lambda^1,\ldots,\lambda^K)\in\mathbb{R}^K$ with $\lambda^I\geq 0$ and $\sum_{l=1}^K\lambda^l=1$. For each I let $\langle(\Omega^I,\pi^I),(\mathscr{P}_i^I),(\sigma_i^J)\rangle$

be a correlated equilibrium generating payoff u^{l} . Wlog. assume all Ω^{l} 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{P}_i = \bigcup_l \mathscr{P}_i^l$ and set $\sigma_i(\omega) = \sigma_i^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Nash's Theorem

> Correlated Equilibria

Summary

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

- Characterization of mixed-strategy Nash equilibria: players only play best responses with positive probability (support lemma).
- Nash's Theorem: Every finite strategic game has a mixed-strategy Nash equilibrium.
- Correlated equilibria can lead to higher payoffs.
- All Nash equilibria are correlated equilibria, but not *vice* versa.