10. Repeated Games

If a strategic game is played repeatedly, then the players might behave differently than in the one-shot setting.

a) finitely repeated: you play the game for a known number of rounds.

b) infinitely repeated: infinite number of rounds.

c) indefinitely repeated: you have a given probability $p$ that the current round is the last one.
Def.: Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game (the "stage game"). Let $A = \prod_{i=1}^{n} A_i$. Then a repeated game with $K \in \mathbb{N} \cup \{0\}$ moves is an extensive game with simultaneous moves $\Gamma = \langle \mathcal{N}, A, H, P, (\nu_i) \rangle$ with

- $H = \{()\} \cup \bigcup_{t=1}^{K} A^t$
- $P(h) = N$ for all nonzero hist. $h$
- If $k \in \mathbb{N}$: $\nu_i(h) = \sum_{t=1}^{k} u_i(a_t)$ for $h = a_1^t a_2^t \ldots a_k^t$ (for turn. hist. $h$)
If \( k = \infty \): Let \( \delta \in (0, 1) \) be a discount factor. Then \( v_i(h) = \sum_{t=1}^{\infty} \delta^{t-1} \cdot u_i(a_t) \)

\[ h = a_1 a_2 \ldots a_t \ldots \]

Example: \( \delta = \frac{1}{2} \). \( u_i(a_t) = 1 \)

\[ v_i(h) = \sum_{t=1}^{\infty} \delta^{t-1} \cdot u_i(a_t) = 1 \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 1 + \ldots \]

\[ = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 2 \]
Example: Finitely repeated PD with \( k = 2 \).

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3,3</td>
<td>0,4</td>
</tr>
<tr>
<td>D</td>
<td>4,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- No matter how many rounds \( k \in \mathbb{N} \) are played, DD is always the unique subgame-perfect equilibrium.
Infinitely repeated games

Discounting: What is \( 1 + \delta + \delta^2 + \delta^3 + \ldots \)?

It converges to \( \frac{1}{1-\delta} \) for \( 0 < \delta < 1 \).

Proof: \( x = 1 + \delta + \delta^2 + \delta^3 + \ldots \)

\[ = 1 + \delta x \]

\( \Rightarrow x - \delta x = 1 \)

\( \Rightarrow x(1-\delta) = 1 \)

\( \Rightarrow x = \frac{1}{1-\delta} \)
Strategies for infinitely repeated games:

Finite automata (Moore automata):

Example:

\[ P_1 : \text{C} \xrightarrow{D} P_2 : \text{D} \]

Grim strategy, \( g \)

Defecting strategy, \( d \)
Is \((g,g)\) an equilibrium?

\[ V^\alpha(g,g) = 3 + 8 \cdot 3 + 8^2 \cdot 3 + \ldots = 3 \cdot \frac{1}{1-8} = 3 \cdot \frac{1}{1-8} \]

Then, the unique run the players get is \((C,C), (C,C), (C,C), \ldots\).
Is \((g, g)\) a NE equilibrium?

Only reasonable candidate(s) for belief responses to \(g\):

\(g'\) : choose D at some point \textit{unprovoked},

and then \textit{ever after}

\[ \Rightarrow \ O(g', g) = \langle (C, C), (C, C), \ldots, (C, C),
\]

\[ \quad \end{array} \]

W.L.O.G., assume that the first \textit{unprovoked} Defection in \(g'\)

\(\text{happens in the first step.}\)

\[ \Rightarrow \ g' = d. \]
So: Determine $v_4(\mathbf{d}, g)$, compare to $v_4(\mathbf{d}, g) = \frac{3}{1-\delta}$.

We already know $v_4(\mathbf{d}, g) = 3 \cdot \frac{1}{1-\delta}$.

$v_4(\mathbf{d}(\mathbf{d}, g)) = v_4(\langle (D, C), (D, D), (D, D), \ldots \rangle)$

$= 4 + 8 \cdot 1 + 8^2 \cdot 1 + \ldots$

$= 4 + 8 \cdot \left(1 + 8 + 8^2 + \ldots \right)$

$= 4 + 8 \cdot \frac{1}{1-8} = 4 + \frac{8}{1-8}$

$(g, g)$ is a NE if $3 \cdot \frac{1}{1-\delta} \geq 4 + \frac{8}{1-8}$

$\Rightarrow 3 \geq 4 \left(1-\delta\right) + \delta = 4 - 4\delta + \delta = 4 - 3\delta$

$\Rightarrow 3\delta \geq 1 \Rightarrow \delta \geq \frac{1}{3}$
This means: \((g,g)\) is a NE if \(S \geq \frac{1}{3}\) is large enough.
(then, \(g\) is at least as good a response to \(g\) as \(d\) is.)

- Also, \((d,d)\) is a NE!

- Also, \((t,t)\) is a NE (for \(S > \frac{1}{2}\)).

Positive message: In repeated games, there are other NEs than just \((D,D)\).

Negative message: Which NE to play?
Indefinitely repeated games:

Theory very similar to theory for infinitely repeated games, because:

discount factor is probability that there is a next round.