Preference relations \prec contain no information about “by how much” one candidate is preferred.

Idea: Use money to measure this.

Use money also for transfers between players “for compensation”.

Formalization:

- Set of alternatives A.
- Set of n players I.
- Valuation functions $v_i : A \rightarrow \mathbb{R}$ such that $v_i(a)$ denotes the value player i assigns to alternative a.
- Payment functions specifying amount $p_i \in \mathbb{R}$ that player i pays.
- Utility of player i: $u_i(a) = v_i(a) - p_i$.
Second Price Auctions
Second price auctions:

- There are n players bidding for a single item.
- Player i’s private valuations of item: w_i.
- Desired outcome: Player with highest private valuation wins bid.
- Players should reveal their valuations truthfully.
- Winner i pays price p^* and has utility $w_i - p^*$.
- Non-winners pay nothing and have utility 0.
Second Price Auctions

Formally:

- $A = N$
- $v_i(a) = \begin{cases} w_i & \text{if } a = i \\ 0 & \text{else} \end{cases}$

What about payments? Say player i wins:

- $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$.
- $p^* = w_i$ (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \varepsilon$.
- better: $p^* = \max_{j \neq i} w_j$ (winner pays second highest bid).
Vickrey Auction

Definition (Vickrey Auction)

The winner of the **Vickrey Auction** (aka second price auction) is the player \(i \) with the highest declared value \(w_i \). He has to pay the second highest declared bid \(p^* = \max_{j \neq i} w_j \).

Proposition (Vickrey)

Let \(i \) be one of the players and \(w_i \) his valuation for the item, \(u_i \) his utility if he truthfully declares \(w_i \) as his valuation of the item, and \(u'_i \) his utility if he falsely declares \(w'_i \) as his valuation of the item. Then \(u_i \geq u'_i \).

Proof

Vickrey Auction

Definition (Vickrey Auction)

The winner of the **Vickrey Auction** (aka second price auction) is the player \(i \) with the highest declared value \(w_i \). He has to pay the second highest declared bid \(p^* = \max_{j \neq i} w_j \).

Proposition (Vickrey)

Let \(i \) be one of the players and \(w_i \) his valuation for the item, \(u_i \) his utility if he truthfully declares \(w_i \) as his valuation of the item, and \(u'_i \) his utility if he falsely declares \(w'_i \) as his valuation of the item. Then \(u_i \geq u'_i \).

Proof

See

Incentive Compatible Mechanisms
Idea: Generalization of Vickrey auctions.

Preferences modeled as functions $v_i : A \rightarrow \mathbb{R}$.

Let V_i be the space of all such functions for player i.

Unlike for social choice functions: Not only decide about chosen alternative, but also about payments.
Mechanisms

Definition (Mechanism)

A mechanism \(\langle f, p_1, \ldots, p_n \rangle \) consists of

- a social choice function \(f: V_1 \times \cdots \times V_n \to A \) and
- for each player \(i \), a payment function \(p_i: V_1 \times \cdots \times V_n \to \mathbb{R} \).

Definition (Incentive Compatibility)

A mechanism \(\langle f, p_1, \ldots, p_n \rangle \) is called incentive compatible if for each player \(i = 1, \ldots, n \), for all preferences \(v_1 \in V_1, \ldots, v_n \in V_n \) and for each preference \(v'_i \in V_i \),

\[
v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).
\]
Definition (Mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ consists of

- a social choice function $f : V_1 \times \cdots \times V_n \rightarrow A$ and
- for each player i, a payment function $p_i : V_1 \times \cdots \times V_n \rightarrow \mathbb{R}$.

Definition (Incentive Compatibility)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called incentive compatible if for each player $i = 1, \ldots, n$, for all preferences $v_1 \in V_1, \ldots, v_n \in V_n$ and for each preference $v'_i \in V_i$,

$$v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$$
VCG Mechanisms
VCG Mechanisms

- If \(\langle f, p_1, \ldots, p_n \rangle \) is incentive compatible, truthfully declaring one's preference is dominant strategy.

- The Vickrey-Clarke-Groves mechanism is an incentive compatible mechanism that maximizes “social welfare”, i.e., the sum over all individual utilities \(\sum_{i=1}^n v_i(a) \).

- **Idea**: Reflect other players’ utilities in payment functions, align all players’ incentives with goal of maximizing social welfare.
VCG Mechanisms

Definition (Vickrey-Clarke-Groves mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

1. $f(v_1, \ldots, v_n) \in \arg\max_{a \in A} \sum_{i=1}^{n} v_i(a)$ for all v_1, \ldots, v_n and
2. there are functions h_1, \ldots, h_n with $h_i : V_{-i} \rightarrow \mathbb{R}$ such that $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$ for all $i = 1, \ldots, n$ and v_1, \ldots, v_n.

Note: $h_i(v_{-i})$ independent of player i’s declared preference $\Rightarrow h_i(v_{-i}) = c$ constant from player i’s perspective.

Utility of player $i = v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{j=1}^{n} v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c$.
Definition (Vickrey-Clarke-Groves mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

1. $f(v_1, \ldots, v_n) \in \arg\max_{a \in A} \sum_{i=1}^{n} v_i(a)$ for all v_1, \ldots, v_n and
2. there are functions h_1, \ldots, h_n with $h_i : V_{-i} \rightarrow \mathbb{R}$ such that $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$ for all $i = 1, \ldots, n$ and v_1, \ldots, v_n.

Note: $h_i(v_{-i})$ independent of player i’s declared preference $\Rightarrow h_i(v_{-i}) = c$ constant from player i’s perspective.

Utility of player $i = v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{j=1}^{n} v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c.$
Theorem (Vickrey-Clarke-Groves)
Every VCG mechanism is incentive compatible.

Proof
Let \(i, v_{-i}, v_i \) and \(v_i' \) be given. Show: Declaring true preference \(v_i \) dominates declaring false preference \(v_i' \).

Let \(a = f(v_i, v_{-i}) \) and \(a' = f(v_i', v_{-i}) \).

Utility player \(i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v_i' \end{cases} \)

Alternative \(a = f(v_i, v_{-i}) \) maximizes social welfare
\[\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a'). \]
\[\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i}). \]
VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let \(i, v_{-i}, v_i \) and \(v'_i \) be given. Show: Declaring true preference \(v_i \) dominates declaring false preference \(v'_i \).

Let \(a = f(v_i, v_{-i}) \) and \(a' = f(v'_i, v_{-i}) \).

Utility player \(i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases} \)

Alternative \(a = f(v_i, v_{-i}) \) maximizes social welfare

\[\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a'). \]

\[\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}). \]
Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let i, v_{-i}, v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i.

Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$.

Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare

$\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a')$.

$\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i})$.

June 23rd, 2016 B. Nebel, S. Wölfli, R. Mattmüller – Game Theory
VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)
Every VCG mechanism is incentive compatible.

Proof
Let \(i, v_{-i}, v_i\) and \(v'_i\) be given. Show: Declaring true preference \(v_i\) dominates declaring false preference \(v'_i\).

Let \(a = f(v_i, v_{-i})\) and \(a' = f(v'_i, v_{-i})\).

Utility player \(i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}

Alternative \(a = f(v_i, v_{-i})\) maximizes social welfare

\[v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a'). \]

\[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}). \]
Clarke Pivot Rule

- **So far:** payment functions p_i and functions h_i unspecified.

- **One possibility:** $h_i(v_{-i}) = 0$ for all h_i and v_{-i}.
 - **Drawback:** Too much money distributed among players (more that necessary).

- **Further requirements:**
 - Players should pay at most as much as they value the outcome.
 - Players should only pay, never receive money.
Definition (individual rationality)

A mechanism is **individually rational** if all players always get a nonnegative utility, i.e., if for all $i = 1, \ldots, n$ and all v_1, \ldots, v_n,

$$v_i(f(v_1, \ldots, v_n)) - p_i(v_1, \ldots, v_n) \geq 0.$$

Definition (positive transfers)

A mechanism has **no positive transfers** if no player is ever paid money, i.e., for all preferences v_1, \ldots, v_n,

$$p_i(v_1, \ldots, v_n) \geq 0.$$
Clarke Pivot Function

Definition (Clarke pivot function)

The **Clarke pivot function** is the function

\[h_i(v_{-i}) = \max_{b \in A} \sum_{j \neq i} v_j(b). \]

- This leads to payment functions

 \[p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \]

 for \(a = f(v_1, \ldots, v_n) \).

- Player \(i \) pays the difference between what the other players could achieve without him and what they achieve with him.

- Each player internalizes the externalities he causes.
Example

- **Players** $I = \{1, 2\}$, **alternatives** $A = \{a, b\}$.
- **Values**: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow **Clarke pivot function** $h_1(v_2) = 15$

\Rightarrow **payment function**

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Function

Example

- **Players** $I = \{1, 2\}$, **alternatives** $A = \{a, b\}$.
- **Values**: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.

- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

⇒ Clarke pivot function $h_1(v_2) = 15$
⇒ payment function

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Function

Example

- Players $I = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
 - With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
 - With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow Clarke pivot function $h_1(v_2) = 15$

\Rightarrow payment function

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Function

Example

- Players $I = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow Clarke pivot function $h_1(v_2) = 15$

\Rightarrow payment function

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Example

- Players $I = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow Clarke pivot function $h_1(v_2) = 15$

\Rightarrow payment function

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Function

Example

- **Players** $I = \{1, 2\}$, alternatives $A = \{a, b\}$.
- **Values**: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- **Without player 1**: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- **With player 1**: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- **With player 1**, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow **Clarke pivot function** $h_1(v_2) = 15$

\Rightarrow **payment function**

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Function

Example

- **Players** $I = \{1, 2\}$, **alternatives** $A = \{a, b\}$.
- **Values**: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow **Clarke pivot function** $h_1(v_2) = 15$

\Rightarrow **payment function**

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Clarke Pivot Rule

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \geq 0$ for all $i = 1, \ldots, n$, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, \ldots, v_n)$ be the alternative maximizing $\sum_{j=1}^{n} v_j(a)$, and b the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player i: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for i: $p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since b maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, \ldots, v_n) \geq 0$ (no positive transfers).
Clarke Pivot Rule

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If \(v_i(a) \geq 0 \) for all \(i = 1, \ldots, n \), \(v_i \in V_i \) and \(a \in A \), then the mechanism is also individually rational.

Proof

Let \(a = f(v_1, \ldots, v_n) \) be the alternative maximizing \(\sum_{j=1}^{n} v_j(a) \), and \(b \) the alternative maximizing \(\sum_{j \neq i} v_j(b) \).

Utility of player \(i \): \(u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \).

Payment function for \(i \): \(p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).

Since \(b \) maximizes \(\sum_{j \neq i} v_j(b) \): \(p_i(v_1, \ldots, v_n) \geq 0 \) (no positive transfers).
Clarke Pivot Rule

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If \(v_i(a) \geq 0 \) for all \(i = 1, \ldots, n \), \(v_i \in V_i \) and \(a \in A \), then the mechanism is also individually rational.

Proof

Let \(a = f(v_1, \ldots, v_n) \) be the alternative maximizing \(\sum_{j=1}^{n} v_j(a) \), and \(b \) the alternative maximizing \(\sum_{j \neq i} v_j(b) \).

Utility of player \(i \): \(u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \).

Payment function for \(i \): \(p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).

Since \(b \) maximizes \(\sum_{j \neq i} v_j(b) \): \(p_i(v_1, \ldots, v_n) \geq 0 \) (no positive transfers).
Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \geq 0$ for all $i = 1, \ldots, n$, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, \ldots, v_n)$ be the alternative maximizing $\sum_{j=1}^{n} v_j(a)$, and b the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player i: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for i: $p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since b maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, \ldots, v_n) \geq 0$

(no positive transfers).
Clarke Pivot Rule

Proof (ctd.)

Individual rationality: Since $v_i(b) \geq 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1}^{n} v_j(a) - \sum_{j=1}^{n} v_j(b).$$

Since a maximizes $\sum_{j=1}^{n} v_j(a)$,

$$\sum_{j=1}^{n} v_j(a) \geq \sum_{j=1}^{n} v_j(b)$$

and hence $u_i \geq 0$.

Therefore, the mechanism is also individually rational.
Proof (ctd.)

Individual rationality: Since \(v_i(b) \geq 0 \),

\[
 u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1}^n v_j(a) - \sum_{j=1}^n v_j(b).
\]

Since \(a \) maximizes \(\sum_{j=1}^n v_j(a) \),

\[
 \sum_{j=1}^n v_j(a) \geq \sum_{j=1}^n v_j(b)
\]

and hence \(u_i \geq 0 \).

Therefore, the mechanism is also individually rational.
Clarke Pivot Rule

Proof (ctd.)

Individual rationality: Since $v_i(b) \geq 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1}^{n} v_j(a) - \sum_{j=1}^{n} v_j(b).$$

Since a maximizes $\sum_{j=1}^{n} v_j(a)$,

$$\sum_{j=1}^{n} v_j(a) \geq \sum_{j=1}^{n} v_j(b)$$

and hence $u_i \geq 0$.

Therefore, the mechanism is also individually rational.
Vickrey Auction as a VCG Mechanism

- $A = N$. Valuations: $w_i, v_a(a) = w_a, v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a.
- Let $a = f(v_1, \ldots, v_n) = \arg \max_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:
 \[
p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)
 = \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.
\]
- Non-winners pay nothing: For $i \neq a$,
 \[
p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)
 = \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.
\]
Vickrey Auction as a VCG Mechanism

- \(A = N \). Valuations: \(w_i, v_a(a) = w_a, v_i(a) = 0 \) (\(i \neq a \)).
- \(a \) maximizes social welfare \(\sum_{i=1}^{n} v_i(a) \) iff \(a \) maximizes \(w_a \).
- Let \(a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j \) be the highest bidder.
- Payments: \(p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).
- But \(\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b \).
- Winner pays value of second highest bid:
 \[
 p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)
 = \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.
 \]
- Non-winners pay nothing: For \(i \neq a \),
 \[
 p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)
 = \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.
 \]
Vickrey Auction as a VCG Mechanism

- \(A = N \). Valuations: \(w_i, v_a(a) = w_a, v_i(a) = 0 \ (i \neq a) \).
- \(a \) maximizes social welfare \(\sum_{i=1}^{n} v_i(a) \) iff \(a \) maximizes \(w_a \).
- Let \(a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j \) be the highest bidder.
- Payments: \(p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).
- But \(\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b \).
- Winner pays value of second highest bid:
 \[
p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)
 = \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.
 \]
- Non-winners pay nothing: For \(i \neq a \),
 \[
p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)
 = \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.
 \]
Vickrey Auction as a VCG Mechanism

- $A = N$. Valuations: w_i, $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a.
- Let $a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:
 $$p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)$$
 $$= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.$$
- Non-winners pay nothing: For $i \neq a$,
 $$p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
 $$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.$$
Vickrey Auction as a VCG Mechanism

- $A = N$. Valuations: w_i, $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a.
- Let $a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:
 \[p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a) \]
 \[= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b. \]
- Non-winners pay nothing: For $i \neq a$,
 \[p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \]
 \[= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0. \]
Vickrey Auction as a VCG Mechanism

- $A = N$. Valuations: $w_i. v_a(a) = w_a, v_i(a) = 0 \ (i \neq a)$.
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a.
- Let $a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:

 $$p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)$$

 $$= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.$$

- Non-winners pay nothing: For $i \neq a$,

 $$p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$

 $$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.$$
Example: Bilateral Trade

- **Seller** s offers item he values with $0 \leq w_s \leq 1$.
- Potential **buyer** b values item with $0 \leq w_b \leq 1$.
- Alternatives $A = \{\text{trade}, \text{no-trade}\}$.
- Valuations:
 \[
 \begin{align*}
 v_s(\text{no-trade}) &= 0, & v_s(\text{trade}) &= -w_s, \\
 v_b(\text{no-trade}) &= 0, & v_b(\text{trade}) &= w_b.
 \end{align*}
 \]
- VCG mechanism maximizes $v_s(a) + v_b(a)$.
- We have
 \[
 \begin{align*}
 v_s(\text{trade}) + v_b(\text{trade}) &= w_b - w_s, \\
 v_s(\text{no-trade}) + v_b(\text{no-trade}) &= 0
 \end{align*}
 \]
 i.e., trade maximizes social welfare iff $w_b \geq w_s$.
Example: Bilateral Trade (ctd.)

- **Requirement:** if *no-trade* is chosen, neither player pays anything:
 \[p_s(v_s, v_b) = p_b(v_s, v_b) = 0. \]

- **To that end,** choose Clarke pivot function for **buyer**:
 \[h_b(v_s) = \max_{a \in A} v_s(a). \]

- **For seller:** Modify Clarke pivot function by an additive constant and set
 \[h_s(v_b) = \max_{a \in A} v_b(a) - w_b. \]
Example: Bilateral Trade (ctd.)

- For alternative *no-trade*,

\[p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\textit{no-trade}) \]

\[= w_b - w_b - 0 = 0 \quad \text{and} \]

\[p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\textit{no-trade}) \]

\[= 0 - 0 = 0. \]

- For alternative *trade*,

\[p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\textit{trade}) \]

\[= w_b - w_b - w_b = -w_b \quad \text{and} \]

\[p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\textit{trade}) \]

\[= 0 + w_s = w_s. \]
Example: Bilateral Trade (ctd.)

- Because $w_b \geq w_s$, the seller gets at least as much as the buyer pays, i.e., the mechanism subsidizes the trade.
- Without subsidies, no incentive compatible bilateral trade possible.
- Note: Buyer and seller can exploit the system by colluding.
Example: Public Project

- Project costs C units.
- Each citizen i privately values the project at w_i units.
- Government will undertake project if $\sum_i w_i > C$.
- Alternatives: $A = \{\text{project, no-project}\}$.
- Valuations:

 \[
 v_G(\text{project}) = -C, \quad v_G(\text{no-project}) = 0,

 v_i(\text{project}) = w_i, \quad v_i(\text{no-project}) = 0.
 \]

- VCG mechanism with Clarke pivot rule: for each citizen i,

 \[
 h_i(v_{-i}) = \max_{a \in A} \left(\sum_{j \neq i} v_j(a) + v_G(a) \right)
 \]

 \[
 = \begin{cases}
 \sum_{j \neq i} w_j - C, & \text{if } \sum_{j \neq i} w_j > C \\
 0, & \text{otherwise}.
 \end{cases}
 \]
Example: Public Project (ctd.)

- Citizen \(i \) pivotal if \(\sum_j w_j > C \) and \(\sum_{j \neq i} w_j \leq C \).

- Payment function for citizen \(i \):

\[
p_i(v_{1..n}, v_G) = h_i(v_{-i}) - \left(\sum_{j \neq i} v_j(f(v_{1..n}, v_G)) + v_G(f(v_{1..n}, v_G)) \right)
\]

- Case 1: Project undertaken, \(i \) pivotal:

\[
p_i(v_{1..n}, v_G) = 0 - \left(\sum_{j \neq i} w_j - C \right) = C - \sum_{j \neq i} w_j
\]

- Case 2: Project undertaken, \(i \) not pivotal:

\[
p_i(v_{1..n}, v_G) = \left(\sum_{j \neq i} w_j - C \right) - \left(\sum_{j \neq i} w_j - C \right) = 0
\]

- Case 3: Project not undertaken:

\[
p_i(v_{1..n}, v_G) = 0
\]
Example: Public Project (ctd.)

- I.e., citizen \(i \) pays nonzero amount

\[
C - \sum_{j \neq i} w_j
\]

only if he is pivotal.

- He pays difference between value of project to fellow citizens and cost \(C \), in general less than \(w_i \).

- Generally,

\[
\sum_i p_i(\text{project}) \leq C
\]

i.e., project has to be subsidized.
Example: Buying a Path in a Network

- Communication network modeled as $G = (V, E)$.
- Each link $e \in E$ owned by different player e.
- Each link $e \in E$ has cost c_e if used.
- **Objective:** procure communication path from s to t.
- **Alternatives:** $A = \{p \mid p$ path from s to $t\}$.
- **Valuations:** $v_e(p) = -c_e$, if $e \in p$, and $v_e(p) = 0$, if $e \notin p$.
- **Maximizing social welfare:**

 $$
 \text{minimize } \sum_{e \in p} c_e \text{ over all paths } p \text{ from } s \text{ to } t.
 $$

- **Example:**

 s $\xrightarrow{c_a = 4}$ i $\xrightarrow{c_d = 12}$ t $\xrightarrow{c_e = 5}$ i $\xrightarrow{c_b = 3}$ s
Example: Buying a Path in a Network (ctd.)

- For $G = (V, E)$ and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$.
- VGC mechanism with Clarke pivot function:

 $$h_e(v_{-e}) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'}$$

 i.e., the cost of the cheapest path from s to t in $G \setminus e$.
 (Assume that G is 2-connected, s.t. such p' exists.)
- Payment functions: for chosen path $p = f(v_1, \ldots, v_n)$,

 $$p_e(v_1, \ldots, v_n) = h_e(v_{-e}) - \sum_{e \notin e' \in p} -c_{e'}.$$

- Case 1: $e \notin p$. Then $p_e(v_1, \ldots, v_n) = 0$.
- Case 2: $e \in p$. Then

 $$p_e(v_1, \ldots, v_n) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'} - \sum_{e \notin e' \in p} -c_{e'}.$$
Example: Buying a Path in a Network (ctd.)

Example:

Cost along b and e: 8
Cost without e: 3
Cost of cheapest path without e: 15 (along b and d)
Difference is payment: $-15 - (-3) = -12$

I.e., owner of arc e gets payed 12 for using his arc.

Note: Alternative path after deletion of e does not necessarily differ from original path at only one position. Could be totally different.
Summary

- New preference model: with money.
- VCG mechanisms generalize Vickrey auctions.
- VCG mechanisms are incentive compatible mechanisms maximizing social welfare.
- With Clarke pivot rule: even no positive transfers and individually rational (if nonnegative valuations).
- Various application areas.