Motivation

- Preference relations \prec contain no information about “by how much” one candidate is preferred.
- Idea: Use money to measure this.
- Use money also for transfers between players “for compensation”.

June 23rd, 2016
B. Nebel, S. Wölfl, R. Mattmüller – Game Theory
Setting

Formalization:

- Set of alternatives A.
- Set of n players I.
- Valuation functions $v_i : A \to \mathbb{R}$ such that $v_i(a)$ denotes the value player i assigns to alternative a.
- Payment functions specifying amount $p_i \in \mathbb{R}$ that player i pays.
- Utility of player i: $u_i(a) = v_i(a) - p_i$.
1 Second Price Auctions
Second Price Auctions

Second price auctions:

- There are n players bidding for a single item.
- Player i’s private valuations of item: w_i.
- Desired outcome: Player with highest private valuation wins bid.
- Players should reveal their valuations truthfully.
- Winner i pays price p^* and has utility $w_i - p^*$.
- Non-winners pay nothing and have utility 0.
Second Price Auctions

Formally:

- \(A = N \)

- \(v_i(a) = \begin{cases} w_i & \text{if } a = i \\ 0 & \text{else} \end{cases} \)

What about payments? Say player \(i \) wins:

- \(p^* = 0 \) (winner pays nothing): bad idea, players would manipulate and publicly declare values \(w'_i \gg w_i \).
- \(p^* = w_i \) (winner pays his valuation): bad idea, players would manipulate and publicly declare values \(w'_i = w_i - \varepsilon \).
- better: \(p^* = \max_{j \neq i} w_j \) (winner pays second highest bid).
Vickrey Auction

Definition (Vickrey Auction)
The winner of the Vickrey Auction (aka second price auction) is the player i with the highest declared value w_i. He has to pay the second highest declared bid $p^* = \max_{j \neq i} w_j$.

Proposition (Vickrey)
Let i be one of the players and w_i his valuation for the item, u_i his utility if he truthfully declares w_i as his valuation of the item, and u'_i his utility if he falsely declares w'_i as his valuation of the item. Then $u_i \geq u'_i$.

Proof
See
2 Incentive Compatible Mechanisms
Incentive Compatible Mechanisms

- **Idea**: Generalization of Vickrey auctions.
- Preferences modeled as functions \(v_i : A \rightarrow \mathbb{R} \).
- Let \(V_i \) be the space of all such functions for player \(i \).
- Unlike for social choice functions: Not only decide about chosen alternative, but also about payments.
Mechanisms

Definition (Mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ consists of

- a social choice function $f : V_1 \times \cdots \times V_n \to A$ and
- for each player i, a payment function $p_i : V_1 \times \cdots \times V_n \to \mathbb{R}$.

Definition (Incentive Compatibility)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called incentive compatible if for each player $i = 1, \ldots, n$, for all preferences $v_1 \in V_1, \ldots, v_n \in V_n$ and for each preference $v'_i \in V_i$,

$$v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$$
3 VCG Mechanisms

- Clarke Pivot Rule
- Examples
VCG Mechanisms

- If \(\langle f, p_1, \ldots, p_n \rangle \) is incentive compatible, truthfully declaring one's preference is dominant strategy.

- The Vickrey-Clarke-Groves mechanism is an incentive compatible mechanism that maximizes "social welfare", i.e., the sum over all individual utilities \(\sum_{i=1}^{n} v_i(a) \).

- Idea: Reflect other players' utilities in payment functions, align all players' incentives with goal of maximizing social welfare.
VCG Mechanisms

Definition (Vickrey-Clarke-Groves mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

1. $f(v_1, \ldots, v_n) \in \arg\max_{a \in A} \sum_{i=1}^{n} v_i(a)$ for all v_1, \ldots, v_n and
2. there are functions h_1, \ldots, h_n with $h_i : V_{-i} \rightarrow \mathbb{R}$ such that $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$ for all $i = 1, \ldots, n$ and v_1, \ldots, v_n.

Note: $h_i(v_{-i})$ independent of player i’s declared preference $\Rightarrow h_i(v_{-i}) = c$ constant from player i’s perspective.

Utility of player i $\quad = v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{j=1}^{n} v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c$.
Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let i, v_{-i}, v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i.

Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$.

Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare

$\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a').$

$\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}). \quad \square$
Clarke Pivot Rule

- So far: payment functions p_i and functions h_i unspecified.
- One possibility: $h_i(v_{-i}) = 0$ for all h_i and v_{-i}.
 Drawback: Too much money distributed among players (more that necessary).
- Further requirements:
 - Players should pay at most as much as they value the outcome.
 - Players should only pay, never receive money.
Definition (individual rationality)
A mechanism is individually rational if all players always get a nonnegative utility, i.e., if for all $i = 1, \ldots, n$ and all v_1, \ldots, v_n,

$$v_i(f(v_1, \ldots, v_n)) - p_i(v_1, \ldots, v_n) \geq 0.$$

Definition (positive transfers)
A mechanism has no positive transfers if no player is ever paid money, i.e., for all preferences v_1, \ldots, v_n,

$$p_i(v_1, \ldots, v_n) \geq 0.$$
Clarke Pivot Function

Definition (Clarke pivot function)

The Clarke pivot function is the function

\[h_i(v_{-i}) = \max_{b \in A} \sum_{j \neq i} v_j(b). \]

This leads to payment functions

\[p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \]

for \(a = f(v_1, \ldots, v_n) \).

Player \(i \) pays the difference between what the other players could achieve without him and what they achieve with him.

Each player internalizes the externalities he causes.
Clarke Pivot Function

Example

- Players \(I = \{1, 2\} \), alternatives \(A = \{a, b\} \).
- Values: \(v_1(a) = 10, v_1(b) = 2, v_2(a) = 9 \) and \(v_2(b) = 15 \).
- Without player 1: \(b \) best, since \(v_2(b) = 15 > 9 = v_2(a) \).
- With player 1: \(a \) best, since
 \[
 v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b).
 \]
- With player 1, other players (i.e., player 2) lose
 \(v_2(b) - v_2(a) = 6 \) units of utility.

\[\Rightarrow\text{ Clarke pivot function } h_1(v_2) = 15\]

\[\Rightarrow\text{ payment function }\]

\[
p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.
\]
Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If \(v_i(a) \geq 0 \) for all \(i = 1, \ldots, n \), \(v_i \in V_i \) and \(a \in A \), then the mechanism is also individually rational.

Proof

Let \(a = f(v_1, \ldots, v_n) \) be the alternative maximizing \(\sum_{j=1}^{n} v_j(a) \), and \(b \) the alternative maximizing \(\sum_{j \neq i} v_j(b) \).

Utility of player \(i \): \(u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \).

Payment function for \(i \): \(p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).

Since \(b \) maximizes \(\sum_{j \neq i} v_j(b) \): \(p_i(v_1, \ldots, v_n) \geq 0 \) (no positive transfers).
Clarke Pivot Rule

Proof (ctd.)

Individual rationality: Since $v_i(b) \geq 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1}^{n} v_j(a) - \sum_{j=1}^{n} v_j(b).$$

Since a maximizes $\sum_{j=1}^{n} v_j(a)$,

$$\sum_{j=1}^{n} v_j(a) \geq \sum_{j=1}^{n} v_j(b)$$

and hence $u_i \geq 0$.

Therefore, the mechanism is also individually rational. \qed
Vickrey Auction as a VCG Mechanism

- $A = N$. Valuations: w_i, $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a.
- Let $a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:
 \[
 p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)
 = \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.
 \]
- Non-winners pay nothing: For $i \neq a$,
 \[
 p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)
 = \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.
 \]
Example: Bilateral Trade

- **Seller** offers item he values with \(0 \leq w_s \leq 1\).
- **Potential buyer** values item with \(0 \leq w_b \leq 1\).
- **Alternatives** \(A = \{\text{trade, no-trade}\}\).
- **Valuations:**

 \[
 v_s(\text{no-trade}) = 0, \quad v_s(\text{trade}) = -w_s, \\
 v_b(\text{no-trade}) = 0, \quad v_b(\text{trade}) = w_b.
 \]

- **VCG mechanism** maximizes \(v_s(a) + v_b(a)\).
- We have

 \[
 v_s(\text{trade}) + v_b(\text{trade}) = w_b - w_s, \\
 v_s(\text{no-trade}) + v_b(\text{no-trade}) = 0
 \]

 i.e., **trade** maximizes social welfare iff \(w_b \geq w_s\).
Example: Bilateral Trade (ctd.)

- **Requirement:** if *no-trade* is chosen, neither player pays anything:

 \[p_s(v_s, v_b) = p_b(v_s, v_b) = 0. \]

- To that end, choose Clarke pivot function for **buyer**:

 \[h_b(v_s) = \max_{a \in A} v_s(a). \]

- For **seller**: Modify Clarke pivot function by an additive constant and set

 \[h_s(v_b) = \max_{a \in A} v_b(a) - w_b. \]
Example: Bilateral Trade (ctd.)

- For alternative \textit{no-trade},

\[
p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\textit{no-trade})
\]

\[
= w_b - w_b - 0 = 0 \quad \text{and}
\]

\[
p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\textit{no-trade})
\]

\[
= 0 - 0 = 0.
\]

- For alternative \textit{trade},

\[
p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\textit{trade})
\]

\[
= w_b - w_b - w_b = -w_b \quad \text{and}
\]

\[
p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\textit{trade})
\]

\[
= 0 + w_s = w_s.
\]
Example: Bilateral Trade (ctd.)

- Because \(w_b \geq w_s \), the seller gets at least as much as the buyer pays, i.e., the mechanism subsidizes the trade.
- Without subsidies, no incentive compatible bilateral trade possible.

Note: Buyer and seller can exploit the system by colluding.
Example: Public Project

- Project costs C units.
- Each citizen i privately values the project at w_i units.
- Government will undertake project if $\sum_i w_i > C$.
- Alternatives: $A = \{\text{project, no-project}\}$.
- Valuations:

 $$v_G(\text{project}) = -C, \quad v_G(\text{no-project}) = 0,$$
 $$v_i(\text{project}) = w_i, \quad v_i(\text{no-project}) = 0.$$

- VCG mechanism with Clarke pivot rule: for each citizen i,

 $$h_i(v_{-i}) = \max_{a \in A} \left(\sum_{j \neq i} v_j(a) + v_G(a) \right)$$

 $$= \begin{cases}
 \sum_{j \neq i} w_j - C, & \text{if } \sum_{j \neq i} w_j > C \\
 0, & \text{otherwise.}
 \end{cases}$$
Example: Public Project (ctd.)

Citizen i pivotal if $\sum_j w_j > C$ and $\sum_{j \neq i} w_j \leq C$.

Payment function for citizen i:

$$p_i(v_{1..n}, v_G) = h_i(v_{-i}) - \left(\sum_{j \neq i} v_j(f(v_{1..n}, v_G)) + v_G(f(v_{1..n}, v_G)) \right)$$

Case 1: Project undertaken, i pivotal:

$$p_i(v_{1..n}, v_G) = 0 - \left(\sum_{j \neq i} w_j - C \right) = C - \sum_{j \neq i} w_j$$

Case 2: Project undertaken, i not pivotal:

$$p_i(v_{1..n}, v_G) = \left(\sum_{j \neq i} w_j - C \right) - \left(\sum_{j \neq i} w_j - C \right) = 0$$

Case 3: Project not undertaken:

$$p_i(v_{1..n}, v_G) = 0$$
Example: Public Project (ctd.)

- I.e., citizen \(i \) pays nonzero amount

 \[C - \sum_{j \neq i} w_j \]

 only if he is pivotal.

- He pays difference between value of project to fellow citizens and cost \(C \), in general less than \(w_i \).

- Generally,

 \[\sum_{i} p_i(\text{project}) \leq C \]

 i.e., project has to be subsidized.
Example: Buying a Path in a Network

- Communication network modeled as $G = (V, E)$.
- Each link $e \in E$ owned by different player e.
- Each link $e \in E$ has cost c_e if used.
- **Objective:** procure communication path from s to t.
- **Alternatives:** $A = \{p \mid p$ path from s to $t\}$.
- **Valuations:** $v_e(p) = -c_e$, if $e \in p$, and $v_e(p) = 0$, if $e \notin p$.
- **Maximizing social welfare:**

 minimize $\sum_{e \in p} c_e$ over all paths p from s to t.

- **Example:**

 $c_a = 4$
 $c_b = 3$
 $c_d = 12$
 $c_e = 5$
Example: Buying a Path in a Network (ctd.)

For $G = (V, E)$ and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$.

VGC mechanism with Clarke pivot function:

$$h_e(v_e) = \max_{p' \in G \setminus e} \sum e' \in p' - c_{e'}$$

i.e., the cost of the cheapest path from s to t in $G \setminus e$.

(Assume that G is 2-connected, s.t. such p' exists.)

Payment functions: for chosen path $p = f(v_1, \ldots, v_n)$,

$$p_e(v_1, \ldots, v_n) = h_e(v_e) - \sum_{e \neq e' \in p} -c_{e'}.$$

- Case 1: $e \notin p$. Then $p_e(v_1, \ldots, v_n) = 0$.
- Case 2: $e \in p$. Then

$$p_e(v_1, \ldots, v_n) = \max_{p' \in G \setminus e} \sum e' \in p' - c_{e'} - \sum_{e \neq e' \in p} -c_{e'}.$$
Example: Buying a Path in a Network (ctd.)

Example:

\[
\begin{align*}
 c_a &= 4 \\
 c_b &= 3 \\
 c_d &= 12 \\
 c_e &= 5
\end{align*}
\]

Cost along \(b \) and \(e \): 8
Cost without \(e \): 3
Cost of cheapest path without \(e \): 15 (along \(b \) and \(d \))
Difference is payment: \(-15 - (-3) = -12\)
I.e., owner of arc \(e \) gets payed 12 for using his arc.

Note: Alternative path after deletion of \(e \) does not necessarily differ from original path at only one position. Could be totally different.
Summary

- New preference model: with **money**.
- VCG mechanisms generalize **Vickrey auctions**.
- VCG mechanisms are incentive compatible mechanisms maximizing social welfare.
- With Clarke pivot rule: even no positive transfers and individually rational (if nonnegative valuations).
- Various application areas.