Motivation

Motivation: We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in \mathbf{NP}.

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.

Finding Nash Equilibria as a Search Problem

Definition (The problem of computing a Nash equilibrium)

NASH

Given: A finite two-player strategic game G.

Find: A mixed-strategy Nash equilibrium (α, β) of G.

Remarks:

- No need to add restriction “...if one exists, else ‘fail’”, because existence is guaranteed by Nash’s theorem.
- The corresponding decision problem can be trivially solved in constant time (always return “true”). Hence, we really need to consider the search problem version instead.
Finding Nash Equilibria as a Search Problem

In this form, Nash looks similar to other search problems, e.g.:

SAT
- **Given:** A propositional formula φ in CNF.
- **Find:** A truth assignment that makes φ true, if one exists, else ‘fail’.

Note: This is the search version of the usual decision problem.

Search Problems

A search problem is given by a binary relation $R(x, y)$.

Definition (Search problem)
A search problem is a problem that can be stated in the following form, for a given binary relation $R(x, y)$ over strings:

SEARCH-R
- **Given:** x.
- **Find:** Some y such that $R(x, y)$ holds, if such a y exists, else ‘fail’.

Complexity Classes for Search Problems

Some complexity classes for search problems:
- **FP**: class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- **FNP**: class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- **TFNP**: class of search problems in FNP where the relation R is total, i.e., $\forall x \exists y . R(x, y)$.
- **PPAD**: class of search problems that can be polynomially reduced to **End-of-Line**.

(PPAD: Polynomial Parity Argument in Directed Graphs)

To understand **PPAD**, we need to understand what the **End-of-Line** problem is.
The End-of-Line Problem

Definition (End-of-Line instance)
Consider a directed graph G with node set $\{0, 1\}^n$ such that each node has in-degree and out-degree at most one and there are no isolated vertices. The graph G is specified by two polynomial-time computable functions π and σ:

- $\pi(v)$: returns the predecessor of v, or \perp if v has no predecessor.
- $\sigma(v)$: returns the successor of v, or \perp if v has no successor.

In G, there is an arc from v to v' if and only if $\sigma(v) = v'$ and $\pi(v') = v$.

Example (End-of-Line)

Comparison of Search Complexity Classes

Relationship of different search complexity classes:

$$FP \subseteq PPAD \subseteq TFNP \subseteq FNP$$

Compare to upper runtime bound that we already know:
Lemke-Howson algorithm has exponential time complexity in the worst case.
PPAD-Completeness of Nash

Theorem (Daskalakis et al., 2006)

Nash is PPAD-complete.

The same holds for k-player instead of just two-player Nash.

Thus, Nash is presumably “simpler” than the SAT search problem, but presumably “harder” than any polynomial search problem.

FNP-Completeness of 2nd-Nash

Another search problem related to Nash equilibria is the problem of finding a second Nash equilibrium (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2nd-NASH problem)

\textbf{2nd-NASH}

- Given: A finite two-player game \(G \) and a mixed-strategy Nash equilibrium of \(G \).
- Find: A second different mixed-strategy Nash equilibrium of \(G \), if one exists, else “fail”.

Theorem (Conitzer and Sandholm, 2003)

2nd-NASH is FNP-complete.
Summary

- **PPAD** is the complexity class for which the End-of-Line problem is complete.
- Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is **PPAD**-complete.
- **FNP** is the search-problem equivalent of the class **NP**.
- Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is **FNP**-complete.
- Several decision problems related to Nash equilibria are **NP**-complete:
 - guaranteed payoff
 - guaranteed social welfare
 - inclusion in support
 - Pareto-optimality of Nash equilibria