Introduction to Game Theory

B. Nebel, R. Mattmüller, S. Wölf

University of Freiburg
T. Schulte, D. Speck

Department of Computer Science
Summer semester 2016

Exercise Sheet 7

Due: Thursday, June 23, 2016

Exercise 7.1 (Properties of voting procedures, 4 points)
Consider the voting procedures plurality vote, instant runoff voting, and the Borda count. Again, we assume that ties are broken in favor of the candidate with the lower index. Moreover, $|A| \geq 3$. Consider the following properties:
Majority criterion: If for more than half of the voters $i, b \prec_{i} a$ for all $b \in$ $A \backslash\{a\}$, then $f\left(\prec_{1}, \ldots, \prec_{n}\right)=a$.
Reversal symmetry: Let $\prec_{1}, \ldots, \prec_{n} \in L$ and for all $i=1, \ldots, n$, let $\prec_{i}^{\prime} \in L$ be defined such that for all $a, b \in A, a \prec_{i} b$ iff $b \prec_{i}^{\prime} a$. If $f\left(\prec_{1}, \ldots, \prec_{n}\right)=c$, then $f\left(\prec_{1}^{\prime}, \ldots, \prec_{n}^{\prime}\right) \neq c$.
Incentive compatibility: $f\left(\prec_{1}, \ldots, \prec_{i}^{\prime}, \ldots, \prec_{n}\right) \preceq_{i} f\left(\prec_{1}, \ldots, \prec_{i}, \ldots, \prec_{n}\right)$ for all $\prec_{1}, \ldots, \prec_{n}, \prec_{i}^{\prime} \in L$.
For each of the nine combinations of voting procedure f and property P, show that f satisfies P or give a counterexample.

Exercise 7.2 (Schulze method, 4 points)
For the following preference relations determine the set of possible winners according to the Schulze-method ${ }^{1}$.

20 voters have the preference $b \prec_{i} c \prec_{i} e \prec_{i} d \prec_{i} a$
10 voters have the preference $d \prec_{i} e \prec_{i} c \prec_{i} b \prec_{i} a$
15 voters have the preference $b \prec_{i} d \prec_{i} a \prec_{i} e \prec_{i} c$
12 voters have the preference $a \prec_{i} b \prec_{i} c \prec_{i} e \prec_{i} d$
13 voters have the preference $a \prec_{i} e \prec_{i} c \prec_{i} d \prec_{i} b$

The exercise sheets may and should be worked on and handed in in groups of two to three students. Please indicate all names on your solution.

[^0]
[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Schulze_method

