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1 From Propositional to Modal Logic

1.1 Propositional logic

Let P be a set of propositional variables. The language LPL(P) has the following list of symbols
as alphabet: variables from P, the logical symbols ⊥, >, ¬, →, ∧, ∨, ↔, and brackets. The
set of LPL(P)-formulae, then, is defined as the smallest set of words over this alphabet that
contains ⊥, >, each p ∈ P, and is closed under the formation rule: If ϕ and ψ are formulae,
then so are ¬ϕ , (ϕ ∧ψ), (ϕ ∨ψ), and (ϕ→ψ). We may express this in an abbreviated manner
as:

ϕ ::=⊥ | > | p | ¬ϕ | (ϕ ∧ϕ
′) | (ϕ ∨ϕ

′) | (ϕ→ϕ
′) | (ϕ ↔ ϕ

′)

— where p ranges over P. Propositional variables are also referred to as atomic formulae.
LPL(P) will also denote the set of LPL(P)-formulae, and for abbreviation we will use the nota-
tions LPL, L(P), or simply L if this is understood from the context.

The semantics of propositional logic is defined in terms of truth assignments. A truth assign-
ment is simply a function V : P→{0,1}, i.e., V assigns to each atomic formula a truth value 0
(“false”) or 1 (“true”). Given a truth assignment V , the satisfaction relation is then defined as
follows:

V 6|=⊥
V |=>
V |= p ⇐⇒ V (p) = 1

V |= ¬ϕ ⇐⇒ V 6|= ϕ

V |= ϕ ∧ψ ⇐⇒ V |= ϕ and V |= ψ

V |= ϕ ∨ψ ⇐⇒ V |= ϕ or V |= ψ

V |= ϕ→ψ ⇐⇒ V 6|= ϕ or V |= ψ

V |= ϕ ↔ ψ ⇐⇒ V |= ϕ iff V |= ψ

Definition 1.1. An LPL-formula ϕ is satisfiable if there exists a truth assignment V such that
V |= ϕ . It is valid if for each truth assignment V , it holds V |= ϕ and contingent if it is neither
valid nor unsatisfiable. Two formulae ϕ and ψ are (logically) equivalent (or: PL-equivalent)
if they are satisfied in the same sets of truth assignments. Given a set of LPL-formulae, Σ, a
formulae ϕ , and a truth assignment V , we write: V |= Σ if V satisfies each ϕ ∈ Σ, and Σ |= ϕ

if for each truth assignment V with V |= Σ, it holds that V |= ϕ . ϕ is then said to be a PL-
consequence of Σ.

We remark that most of these concepts also make sense if we restrict them to classes of truth
assignments: Let C be a class of truth assignments (on the same set of propositional variables
P). Then ϕ is called C -satisfiable if ϕ is satisfied in some V chosen from C , C -valid if ϕ is
satisfied in each V in C , etc.

From these definitions, it is clear that for all formulae ϕ and ψ , (ϕ∧ψ) is equivalent to ¬(ϕ→
¬ψ) and (ϕ ∨ψ) equivalent to (¬ϕ→ψ), etc. That is, one can drop, for example, ∧, ∨, ↔,
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>, and ⊥ from the alphabet and instead use them as abbreviations in the meta-language:

(ϕ ∧ψ) := ¬(ϕ→¬ψ)

(ϕ ∨ψ) := (¬ϕ→ψ)

(ϕ ↔ ψ) := ((ϕ→ψ)∧ (ψ→ϕ))

> := (p0→ p0)

⊥ := ¬>

where p0 is a fixed chosen propositional variable in P.

A complete system of truth-functional connectives is any set of truth-functional connectives in
which each truth-functional connective of arbitrary arity is definable. Examples include the
systems {¬,→}, {¬,∧}, {¬,∨}, and {⊥,→}. In what follows we will often switch between
different such complete systems as appropriate in the respective context. Most of the times,
however, we will stick to the system {¬,→}.

For truth assignments V and V ′, we say that V and V ′ coincide on Q⊆ P (and write V =Q V ′)
if for each q ∈ Q, V (q) =V ′(q).

Lemma 1.1 (Coincidence Lemma). Let V and V ′ be truth assignments that coincide on Q⊆ P.
Then for each formula ϕ in which only propositional variables from Q occur, it holds:

V |= ϕ ⇐⇒ V ′ |= ϕ. C

Definition 1.2. A substitution is a map σ : P→ LPL. Each substitution can be extended to a
function ·σ : LPL→ LPL via the following recursive definition:

pσ := σ(p)

(¬ϕ)σ := ¬ϕ
σ

(ϕ→ψ)σ := ϕ
σ→ψ

σ

. . .

If a substitution σ simply “replaces” each occurrence of variable p by a formula ϕ , we simply
write ψ[p/ϕ] instead of ψσ . Analogously, we will use the notation ψ[p1/ϕ1, . . . , pk/ϕk] to
indicate that the variables p1, . . . , pn are simultaneously replaced by ϕ1, . . . ,ϕn, respectively.

Lemma 1.2 (Substitution Lemma). Let σ be a substitution and V be a truth assignment. Define
V σ by V σ (p) = 1 if and only if V |= σ(p) for p ∈ P. Then for each formula ϕ ,

V σ |= ϕ ⇐⇒ V |= ϕ
σ . C

Lemma 1.3 (Interpolation Theorem). For any LPL-formulae ϕ and ψ with ϕ |= ψ , there exists
an LPL-formula χ such that

(a) in χ only such propositional variables occur that occur in both ϕ and ψ , and

(b) it holds ϕ |= χ and χ |= ψ . C

In the situation of the lemma the formula χ is called an interpolant of ϕ and ψ . Actually, the
proof requires that one of the symbols ⊥ and/or > are in the language LPL. Otherwise, the
claim only holds true for ϕ |= ψ , where at least one propositional variable occurs in both ϕ and
ψ .
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Definition 1.3. The degree of an LPL-formula ϕ , degϕ , is the number of logical connectives
occurring in ϕ . The length of ϕ is the number of alphabet symbols occurring ϕ . Note that both
notions depend on the chosen system of truth-functional connectives.

Remark 1.1. It is an NP-complete problem (referred to as SAT) to decide for a given LPL-
formula ϕ whether it is satisfiable. The problem is also NP-complete if satisfiability is to be
checked for propositional formulae in conjunctive normal form (CNF). A formula is in CNF if
it is a conjunction of disjunctions of literals (a literal is a negated or unnegated atomic formula),
i.e., the formula has the form

n∧
i=1

mi∨
ji

li ji , (CNF)

where li ji is of the form p or ¬p for some propositional variable p. Accordingly, the problem
to decide whether a given formula is valid is co-NP-complete.

1.2 A simple modal logic

In what follows we will introduce a very simple “modal logic”. Again let P be a set of atomic
propositions (or propositional variables). The language L�(P) has the following list of sym-
bols as alphabet: propositions of P, the logical symbols ¬,→, and �, and brackets. The set of
L�(P)-formulae, then, is defined as follows:

ϕ ::= p | ¬ϕ | (ϕ→ϕ
′) | �ϕ

— where p ranges over P. L�(P) will also denote the set of L�(P)-formulae, and for abbrevi-
ation we will use the notations L�, L�(P), or simply L if this is understood.

On the basis of the connectives of L�(P), we can define:

♦ϕ := ¬�¬ϕ

(ϕ �→ ψ) :=�(ϕ→ψ)

Definition 1.4. A valuation model is a non-trivial family V = {Vs}s∈S of truth assignments of
L� (“non-trivial” means that S is a non-empty set). The elements of S are referred to as states
(or possible worlds). V can be thought of as a function (called P-valuation on S) V : S→ 2P,
i.e., it assigns to each state s in S a (possibly empty) set of propositional variables (namely
those that are true in Vs).

Given a valuation model V , we define a satisfaction relation as follows:

V |=s p ⇐⇒ p ∈V (s)

V |=s ¬ϕ ⇐⇒ V 6|=s ϕ

V |=s ϕ→ψ ⇐⇒ V 6|=s ϕ or V |=s ψ

V |=s �ϕ ⇐⇒ V |=s′ ϕ, for each s′ ∈ S

By this definition and the definition of ♦, the truth condition for ♦ϕ is then given by:

V |=s ♦ϕ ⇐⇒ V |=s ¬�¬ϕ

⇐⇒ V 6|=s �¬ϕ

⇐⇒ V 6|=s′ ¬ϕ, for some s′ ∈ S

⇐⇒ V |=s′ ϕ, for some s′ ∈ S
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Figure 1.1: An example of a valuation model

Definition 1.5. An L�-formula ϕ is called satisfiable in a valuation model V if there exists
an s ∈ S such that V |=s ϕ . It is called valid in V (V |= ϕ) if V |=s ϕ for each s ∈ S. ϕ is
valuation-satisfiable if it is satisfiable in some valuation model, and it is valuation-valid if it is
valid in each valuation model. Given a set of L�-formulae Σ and an L�-formula ϕ , we say that
Σ (locally) entails ϕ if for each valuation model V = (Vs)s∈S and each state s ∈ S with V |=s Σ,
it holds that V |=s ϕ . Σ globally entails ϕ if for each valuation model V with V |= Σ, it holds
V |= ϕ .

An example of a valuation model is depicted in Figure 1.1. The model itself can be formally
defined by S := {s0,s1,s2}, V (s0) := {p,q,r}, V (s1) := {q,r}, and V (s2) := {p,q}. In this
model it holds, for example V |= �q, V |= ¬s, V |= ♦¬r, V |= �(¬p→ r). The formula s is
unsatisfiable in this model, and both r and ¬r are satisfiable in the model.

The logic characterized by valuation models (i.e., the set of valid formulae wrt. the valuation
semantics) is rather special. It not only allows for reducing iterated modalities, but also al-
lows for reducing nested occurrences of modalities. A measure for nestedness is the so-called
modal depth of a formula, depthϕ , which counts the depth of nested occurrences of the modal
operators:

depth(p) = 0

depth(¬ϕ) = depth(ϕ)

depth(ϕ→ψ) = max(depth(ϕ),depth(ψ))

depth(�ϕ) = depth(ϕ)+1

In what follows we want to prove that each L�-formula ϕ is equivalent (with respect to valua-
tion models) to an L�-formula ψ with depthψ ≤ 1. In order to prove this claim, we will need
“reduction principles” that allow for reducing the modal depth of formulae. For the sake of sim-
plicity we will work in a setting in which ∧, ∨, and ♦ are also present in the object language.
Note that the modal depth of a formula does not depend on the chosen set of connectives.

Lemma 1.4. The following L�-formulae are valuation-valid:

(R0) ¬�ϕ ↔ ♦¬ϕ

(R0∗) ¬♦ϕ ↔�¬ϕ

(R1) ��ϕ ↔�ϕ
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(R1∗) ♦♦ϕ ↔ ♦ϕ

(R2) ♦�ϕ ↔�ϕ

(R2∗) �♦ϕ ↔ ♦ϕ

(R3) �(ϕ ∧ψ)↔ (�ϕ ∧�ψ)

(R3∗) ♦(ϕ ∨ψ)↔ (♦ϕ ∨♦ψ)

(R4) �(ϕ ∨�ψ)↔ (�ϕ ∨�ψ)

(R4∗) ♦(ϕ ∧♦ψ)↔ (♦ϕ ∧♦ψ)

(R5) �(ϕ ∨♦ψ)↔ (�ϕ ∨♦ψ)

(R5∗) ♦(ϕ ∧�ψ)↔ (♦ϕ ∧�ψ) C

Theorem 1.5. Each L�-formula ϕ is equivalent (with respect to valuation models) to an L�-
formula ψ with depthψ ≤ 1.

Proof. For the proof let ϕ be a formula with depthϕ ≥ 2. We present a procedure that syntac-
tically transforms ϕ into an equivalent formula with modal depth at most 1.

1. Rewrite ϕ in such a way that only ¬, �, ♦, ∧, and ∨ occur in it, i.e., we replace in ϕ

each subformula of the form (ψ→ψ ′) by (¬ψ ∨ψ ′) and each subformula of the form
(ψ ↔ ψ ′) by ((¬ψ ∨ψ ′)∧ (ψ ∨¬ψ ′)).

2. Rewrite ϕ such that the negation symbol only occurs in front of propositional variables.
For this, until ϕ can not be further modified,

a) apply the de Morgan laws, i.e., replace subformulae of ϕ of the form ¬(ψ ∧ψ ′) by
(¬ψ ∨¬ψ ′) and subformulae of the form ¬(ψ ∨ψ ′) by (¬ψ ∧¬ψ ′);

b) apply rules (R0) and (R0∗): replace subformulae of the form ¬�ψ by ♦¬ψ and
subformulae of the form ¬♦ψ by �¬ψ;

c) absorb iterated negations (¬¬ϕ ↔ ϕ);

d) absorb iterated modalities where possible (by applying rules (R1), (R1∗), (R2), and
(R2∗)).

3. Distribute modalities in front of disjunctions and conjunctions, where possible. For this,
as long as the depth of ϕ is greater than 1,

a) apply rules (R3) and (R3∗) on suitable subformulae of ϕ;

b) apply rules (R4), (R4∗), (R5), and (R5∗) on suitable subformulae of ϕ (this reduces
the modal depth);

c) absorb iterated modalities where possible (by applying rules (R1), (R1∗), (R2), and
(R2∗));

d) apply the PL commutativity, associativity, or distributivity laws if necessary.

In fact, if after step (2.) ϕ has modal depth greater than 2, then ϕ has a subformula ψ of the
form �ψ ′ or ♦ψ ′, where depthψ ′ = depthϕ − 1 and ψ ′ is a conjunction or a disjunction of
formulae.

Case 1: Assume ψ =�ψ ′.

9



Case 1.1: If ψ ′ is a conjunction of formulae ψ ′1,ψ
′
2, then by (R3) �ψ ′ is replaced by

(�ψ ′1∧�ψ ′2).

Case 1.2: If ψ ′ is a disjunction of formulae ψ ′1 and ψ ′2 and one of these has the form�τ

or ♦τ , then we can apply (R4) or (R5), thus reducing the depth of ψ ′.

Case 1.3: If ψ ′ is a disjunction ψ ′1∨ψ ′2, but neither of the formulae ψ ′1,ψ
′
2 has the form

�τ or ♦τ , then one of it must be a disjunction or a conjunction of formulae. In
the first case apply the associative law and in the second case apply the distributive
law to the formula ψ ′. Note that after applying the distributivity law we obtain a
formula that can be handled as in Case 1.1.

Case 2: ψ = ♦ψ ′. The procedure is analogous to that of case 1.

Since all the transformations applied in this procedure result in equivalent formulae, the result-
ing formula is equivalent to the input formula. C

Example 1.1. Consider the formula ¬♦(p∧ (q∨♦r)). By applying the procedure presented in
the proof, we obtain:

(1) ¬♦(p∧ (q∨♦r))
(2) �¬(p∧ (q∨♦r))
(3) �(¬p∨¬(q∨♦r))
(4) �(¬p∨ (¬q∧¬♦r))
(5) �(¬p∨ (¬q∧�¬r))
(6) �((¬p∨¬q)∧ (¬p∨�¬r))
(7) �(¬p∨¬q)∧�(¬p∨�¬r)
(8) �(¬p∨¬q)∧ (�¬p∨�¬r)

Definition 1.6. Let ϕ be an L�-formula.

(a) ϕ is said to have modal conjunctive normal form (MCNF) if ϕ has the form

n∧
i=1

mi∨
ji=1

αi ji , (CNF)

where each “atom” αi ji is an LPL-formula or a formula of the forms �ψ ′ or ♦ψ ′ with
depth(ψ ′) = 0.

(b) ϕ is said to have ordered MCNF if ϕ has MCNF and each conjunct
∨

ji αi ji has the form

β ∨�γ1∨·· ·∨�γn∨♦δ . (∗)

(Note that we also allow degenerated cases of (∗), where one or more of the disjuncts in
the form are not present).

Obviously, each formula in MCNF has modal depth ≤ 1. Vice versa, by extending/modifying
the procedure presented in the proof of Theorem 1.5, one obtains:

Theorem 1.6. Each L�-formula ϕ is valuation-equivalent to an L�-formula ψ with (ordered)
MCNF.
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Proof. By the procedure presented in the proof of Theorem 1.5, we obtain a formula with
modal depth ≤ 1 that is a disjunction of conjunctions (or a conjunction of disjunctions) of
formulae that are of modal depth 0 or have the form�γ or ♦γ , where γ is a formula with modal
depth 0. In the first case we apply the distributive and (if necessary) the associative laws to
obtain a formula in MCNF. Obviously, if a formula ϕ has MCNF, it can easily be transformed
into an equivalent formula with ordered MCNF by applying the theorem (♦δ1∨♦δ2)↔♦(δ1∨
δ2). C

Example 1.2. As an example consider the formula�(♦p→ p)→�(p→�p). We first reduce
this formula to a formula with modal depth 1:

(1) ¬�(¬♦p∨ p)∨�(¬p∨�p)
(2) ♦(♦p∧¬p)∨�(¬p∨�p)
(3) (♦p∧♦¬p)∨ (�¬p∨�p)

From this one obtains MCNF by the distributivity laws:

(4) (♦p∨�¬p∨�p)∧ (♦¬p∨�¬p∨�p)

By simply reordering (4) we get a formula in ordered MCNF

(5) (�¬p∨�p∨♦p)∧ (�¬p∨�p∨♦¬p)

Using this result, we can now introduce a test for deciding whether a given formula ϕ is
valuation-valid. Thereto, we can assume that ϕ already has ordered MCNF. Then, by defi-
nition, ϕ is a conjunction of formulae that have the form

β ∨�γ1∨·· ·∨�γn∨♦δ , (∗)

where all formulae β ,γ1, . . . ,γn,δ have modal depth 0. Consider then the disjunctions

β ∨δ , γ1∨δ , . . . , γn∨δ , (∗∗)

which are obviously formulae of PL. A formula of form (∗) is said to pass the disjunction test
if at least one of the disjunctions in (∗∗) is valid in PL and a conjunction of such formulae is
said to pass the disjunction test if each of its conjuncts passes it.
In the example presented above, formula (5) has two conjuncts and we have to test both of
them. In the disjunction test for the first conjunct, �¬p∨�p∨♦p, we have to test whether
one of the disjunctions

(6) ¬p∨ p, p∨ p

is PL-valid, which of course is the case. For the second conjunct, �¬p∨�p∨♦¬p, the
disjunction test gives

(7) ¬p∨¬p, p∨¬p

and here the second formula is obviously PL-valid. Thus, both conjuncts pass the disjunction
test, and hence so does (5).

Lemma 1.7. Let ϕ be an L�-formula of the form (∗). Then ϕ passes the disjunction test if and
only if ϕ is valid in each valuation model.

11



Proof. Observation: Given a valuation model V = {Vs}s∈S, for each s ∈ S and each formula ψ

with depthψ = 0, we have:
V |=s ψ ⇐⇒ Vs |= ψ.

Let now ϕ be a formula of the form (∗) that passes the disjunction test. Then at least one of the
disjunctions in (∗∗) is PL-valid. We have to show that ϕ is valid in each valuation model. For
proof by contradiction, assume that this is not the case. Then there exists a valuation model
{Vs}s and a state s0 such that V 6|=s0 ϕ . That is, V 6|=s0 β , V 6|=s0 ♦δ , and for each 1 ≤ i ≤ n,
V 6|=s0 �γi. Thus V 6|=s δ for each s ∈ S. Hence (by the observation), Vs0 6|= β ∨ δ . Moreover,
for each i there is a state si such that Vsi 6|= γi∨δ — in contradiction to the assumption that β ∨δ

or one of the γi∨δ is PL-valid.
For the other direction, let ϕ be a formula of the form (∗) that does not pass the disjunction
test. That is, none of the disjuncts β ∨δ , γ1∨δ , . . . , γn∨δ is PL-valid. We have to show that
ϕ is not valid in the sense of the valuation semantics (i.e., it needs to be shown that there exists
a valuation model and a state in that model that falsifies ϕ). Since each of these disjunctions is
not valid in PL, there exist truth assignments V0, . . . ,Vn such that V0 6|= β ∨ δ and Vi 6|= γi ∨ δ ,
for each 1 ≤ i ≤ n. Consider the valuation model V = {Vi}i∈{0,...,n}. Then it follows: V 6|=0 β ,
V 6|=i γi for each 1≤ i≤ n, and V 6|=i δ for each 0≤ i≤ n. Thus, V 6|=0 ϕ . C

Since a conjunction of formulae is valuation-valid if and only if each of the conjuncts is so, we
obtain:

Theorem 1.8. An L�-formula is valuation-valid if and only if it is valuation-equivalent to a
formula in ordered MCNF that passes the disjunction test. C

In fact, what we have done is the following: we have “reduced” the problem of testing the
validity of L�-formulae to the problem of testing a suitable set of LPL-formulae for validity.
Since transforming a formula into ordered MCNF can be done by an algorithm (note that
by applying the distributive laws, the length of the formula may increase exponentially) and
since testing PL-validity is decidable, testing L�-formulae for validity is a decidable decision
problem.

Theorem 1.9. The problem of testing a L�-formula for validity (in terms of valuation seman-
tics) is decidable. C

Bibliographic remarks

There are a series of text books that introduce into classic propositional and classical first-
order logics (Ebbinghaus et al., 2007; Schöning, 2000; Kutschera and Breitkopf, 2007). There
are also quite good introductions to modal logics. To list some of them (some are somewhat
advanced): Hughes and Cresswell (1996) – a classical, comprehensive book on modal logics
that supersedes two previous books (Hughes and Cresswell, 1985, 1990) – , Chellas (1980),
Chagrov and Zakharyaschev (1997), Kutschera (1976), Kracht (1999), Gabbay et al. (2003) (a
very good introduction to multi-dimensional modal logics) and Blackburn et al. (2002), which
is in most parts the basis of these lecture notes.
In this chapter, section 1.2 (specifically the parts on modal conjunctive normal forms and the
decision procedure based on the disjunction test) draws much from Hughes and Cresswell
(1996), chapter 5.
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2 Modal Language, Frames, and Models

In this section we describe basic modal-logical concepts in a rather general setting. We intro-
duce multi-modal languages with modal operators of arbitrary arity and introduce the relational
semantics for these languages. Moreover we discuss different concrete examples of such modal
logics, namely temporal logic, epistemic logic, and dynamic logic. However, we start by defin-
ing relational structures and discussing different types of such structures that will be topic in
later sections.

2.1 Relational structures

A relation on a set S is any subset R ⊆ Sn for a fixed natural number n (the arity of R). Since
relations are sets, we can apply set-theoretical operations on them, for example, if R is an n-
ary relation, then its complement Sn \R is an n-ary relation as well. And if R1 and R2 are
such relation, then so are R1∩R2 and R1∪R2. If σ is a permutation of {1, . . . ,n}, then Rσ :=
{(s1, . . . ,sn)∈ Sn : (sσ−1(1), . . . ,sσ−1(n))∈R} is an n-ary relation. Instead of s=(s1, . . . ,sn)∈R,
we often simply write Rs or Rs1 . . .sn. If R is a binary relation, we will use infix notation s1 Rs2
instead of writing Rs1s2.

Often we will be interested in binary relations (also called dyadic relations) and their properties.

Definition 2.1. A binary relation R on S is called

(a) reflexive if s R s for each s ∈ S;

(b) irreflexive if s R s for no s ∈ S;

(c) serial if for each s ∈ S there is an s′ ∈ S such that s R s′;

(d) symmetric if s2 R s1 whenever s1 R s2;

(e) asymmetric if there are no s1,s2 ∈ S such that s1 R s2 and s2 R s1;

(f) antisymmetric if for all s1,s2 ∈ S with s1 R s2 and s2 R s1, s1 = s2;

(g) transitive if for all s1,s2,s3 ∈ S with s1 R s2 and s2 R s3, s1 R s3;

(h) Euclidean if for all s1,s2,s3 ∈ S with s1 R s2 and s1 R s3, s2 R s3;

(i) universal for all s1,s2 ∈ S, s1 R s2.

(j) connected if for all s1,s2 ∈ S, s1 R s2 or s2 R s1;

(k) weakly connected if for all s1,s2,s3 ∈ S with s1 R s2 and s1 R s3, s2 R s3 or s3 R s2;

(l) well-founded if there is no infinite chain . . .s2 R s1 R s0 in S (see Definition 2.2);

(m) functional if for all s1,s2,s3 ∈ S with s1 R s2 and s1 R s3, s2 = s3.

(n) convergent if for all s1,s2,s3 ∈ S with s1 R s2 and s1 R s3, there exists an s4 ∈ S with s2 R s4
and s3 R s4.

Lemma 2.1.
(a) If R is reflexive and Euclidean, then it is symmetric and transitive.

(b) If R is symmetric and transitive, then it is Euclidean.

(c) If R is serial, symmetric, transitive, then it is reflexive.
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(d) A transitive relation R on a finite set S is well-founded if and only if it is irreflexive.

Definition 2.2. The converse of a binary relation R on S is the relation R−1 := {(s1,s2) ∈ S2 :
(s2,s1) ∈ R}. The composition of binary relations R1 and R2 on S is defined as:

R1 ◦R2 := {(s1,s2) ∈ S2 : for some s′ ∈ S, s1 R1 s′ and s′ R2 s2}.

For R a binary relation, we set

R0 := ∆S := {(s,s′) ∈ S2 : s = s′}
Rm := Rm−1 ◦R

(note that ◦ is associative). An R-chain in S is a (finite or infinite) sequence s0, . . . ,sn, . . . such
that for each i≥ 0, si R si+1. Moreover, R[s] := {s′ ∈ S : s R s′} denotes the set of R-successors
of s. Given a relation R on S, Rr denotes the smallest superset of R that is reflexive (the reflexive
closure of R), R+ the smallest superset of R that is transitive (transitive closure), and R∗ the
smallest superset of R that is reflexive and transitive (reflexive transitive closure). That is,

Rr :=
⋂
{R′ ⊆ S2 : R′ is reflexive and R⊆ R′}

R+ :=
⋂
{R′ ⊆ S2 : R′ is transitive and R⊆ R′}

R∗ :=
⋂
{R′ ⊆ S2 : R′ is reflexive and transitive, and R⊆ R′}.

Definition 2.3 (Relational structure). A relational structure is an ordered pair R = 〈S,{Ri}i∈I〉,
where S is a non-empty set and {Ri}i∈I is a family of relations on S.

Definition 2.4 (Homomorphism). Let R = 〈S,{Ri}i∈I〉 and R ′ = 〈S′,R′i∈I〉 be relational struc-
tures such that for each i ∈ I, Ri and R′i are relations of the same arity. A homomorphism from
R to R ′ (written as f : R→R ′) is a function f : S→ S′ such that for each i ∈ I,

Ri s1 . . .sri ⇒ R′i f (s1) . . . f (sri).

An embedding of R into R ′ is an injective function f : S→ S′ such that the stronger condition

Ri s1 . . .sri ⇐⇒ R′i f (s1) . . . f (sri)

holds. An isomorphism is an bijective embedding. An endomorphism is a homomorphism
f : R→R and an automorphism is an isomorphism f : R→R.

In what follows we provide an overview over different types of relational structures that will
occur frequently in modal logics.

Example 2.1 (Orders). Natural examples of ordering relations are the natural orders defined
on the natural, the rational, and the real numbers. More generally, a partial order is an ordered
pair 〈X ,≤〉 where the ordering relation ≤ is reflexive, transitive, and antisymmetric. A linear
order is a partial order where the ordering relation ≤ is connected (that is, all x,y ∈ X are
comparable; in order theory the connectedness condition is also referred to as totality condition,
so total partial order and linear order means the same). A strict partial order is an ordered
pair 〈X ,<〉 in which the ordering relation < is irreflexive and transitive. Each strict partial
order defines a partial order if one sets x ≤ y := x < y∨ x = y. Conversely, each partial order
defines a strict partial order by x < y := x ≤ y∧ x 6= y. In general, x > y and x ≥ y denote
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Figure 2.1: Transition systems

the converse relations of x < y and x ≤ y, respectively. If for all x,y ∈ X , either x < y, x = y,
or y < x holds (trichotomy condition), a strict partial order is said to be a strict linear order.
There are even weaker ordering concepts: In a preoder the ordering is just assumed to be
reflexive and transitive. Thus partial orders are those preorders in which the ordering relation
is antisymmetric. A weak order is a total preorder and a strict weak order is a strict partial
order in which the incomparability relation is transitive.

Example 2.2 (Equivalence relation). An equivalence relation on S is a binary relation ∼ on S
that is reflexive, symmetric, and transitive. For each s∈ S, [s]∼ :=∼[s] is called the equivalence
class of s (and s is called a representative of that class). The set of all equivalence classes
wrt.∼ is denoted by S/∼ and forms a partition of S, i.e., S =

⋃
X∈S/∼X and for all X ,Y ∈ S/∼,

X ∩Y = /0 or X = Y .

Example 2.3 (Tree). In graph theory, a tree is an undirected simple graph G = 〈V,E〉 that is
connected and acyclic. A rooted tree is a tree with one node r designated as the root of the
tree. In a rooted tree all (undirected) edges can be conceived of as arcs (i.e., directed edges);
the root defines a direction on the edges. Hence, each rooted tree can be cast as a relational
structure 〈V,A〉 consisting of a set of nodes, V , and a set of arcs, A, on V ((v,v′) ∈ A is read as
“v′ is a child of v”) such that:

1. V contains a unique element v0 (the root of the tree) such that for each v ∈V \{v0}, there
exists a directed path from v0 to v (or equivalently v0 A+ v).

2. Each node except v0 has a unique parent, i.e., for each v ∈ S \ {v0}, there exists exactly
one v′ ∈V with v′ A v.

3. A+ is irreflexive.

Example 2.4 (Labeled transition system). In automata theory a labeled transition system is an
ordered triple 〈S,L,T 〉, where S is a non-empty set of states, L is a set of labels, and T ⊆ S×L×
S is a ternary relation (its elements are referred to as labeled transitions). The transition relation
is often written as an arrow: for example, s α→ s′ instead of (s,α,s′) ∈ T . A transition system
is called deterministic if for all s α→ s′ and s α→ s′′, it holds s′ = s′′. Otherwise, the transition
system is called non-deterministic (the examples in Figure 2.1 depict a deterministic and a non-
deterministic transition system, respectively). It is clear that labeled transition systems can be
cast as relational structures 〈S,{Tα}α∈L〉 where Tα := {(s,s′) ∈ S2 : (s,α,s′) ∈ T}.
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2.2 Modal languages

Definition 2.5. Let P be a set of propositional variables and let τ = {♦i}i∈I be a family of ”di-
amond” symbols (its elements are referred to as modal operators). The basic modal language
(with modal operators from τ), Lτ(P), has the following formulae:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ1∨ϕ2) | ♦iϕ.

More generally, a (modal) similarity type is a family τ = {(4i,ri)}i∈I where each ”triangle”
4i is equipped with an arity ri ∈N. The set of Lτ(P)-formulae is then defined by:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ1∨ϕ2) | 4i(ϕ1, . . . ,ϕri)

The dual of4i is defined as:

5i(ϕ1, . . . ,ϕri) := ¬4i (¬ϕ1, . . . ,¬ϕri)

and often referred to as nabla. In the basic modal logic, “nablas” correspond to boxes. In many
contexts it is usual to write 〈i〉 instead of ♦i and accordingly [i] instead of�i. 0-ary triangles are
called modal constants. To indicate nullary or unary modal operators, we will use the symbol
© and ♦, respectively.

Example 2.5 (Doxastic/epistemic logic). In doxastic logic ♦ϕ can be read as “it is consistent
with the agent’s belief state that ϕ .” Accordingly, the reading of �ϕ (often written as Bϕ)
is: “the agent believes that ϕ is true.” Similarly, in epistemic logic ♦ϕ and �ϕ (or Kϕ) can
be read as “it is consistent with what the agent knows that ϕ” and “the agent knows that ϕ

is true”, respectively. There are also logics that combine knowledge and belief. The formula
Kϕ ↔ Bϕ ∧ϕ , for example, expresses that knowledge is just true belief.
There are also multi-agent doxastic/epistemic logics. Given a set of agents A, one considers
a modal language with one modality operator for each agent in A or even languages with a
modality operator for each group (set of agents) in A. Possible readings of Kγϕ include “each
agent a ∈ γ knows ϕ” or “it is common knowledge in the group γ that ϕ is true.”
Autoepistemic logic is a special epistemic logic to represent, and reason about, “knowledge
about knowledge”. Contrary to the usual epistemic logic, autoepistemic logic is based on a
semantics that generalizes the stable model semantics used in the context of logic programming
with negation as failure. That is, the semantics of autoepistemic logic builds on a concept of
extension similar to that considered in default logic to characterize the different belief states
of an agent that are justified by a default theory (see lecture on Knowledge Representation and
Reasoning).

Example 2.6 (Temporal logic). Basic temporal logic has two modal operators, one to look into
the future and one to look into the past, that is, the modal language of basic temporal logic
has the “diamonds” F (“it will be the case”) and P (read as: “it has been the case”). The box
operators corresponding to F and P are G (“it will always be the case”) and H (read as: “it
has always been the case that”), respectively. In philosophical logic these operators are usually
used in the context of strict linear orders (flows of time).
In computer science (in particular in model checking) future-directed languages are more promi-
nent. For example, Linear temporal logic (LTL) has been introduced by Amir Pnueli in order
to formally verify properties of computer programs. LTL has two unary modal operators X
(read: “next”) and F (read: “in the future”) and a binary modal operator U (read: “until”). In
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the context of verification even richer languages are considered. For example, in Computation
tree logic (CTL) one considers tree-like flows of time in which a state may have many possible
futures. Accordingly, CTL has a series of modal connectives: AX, EX, AF, EF, AG, EG, AU,
EU. Here, A means “in all future paths” and E means “in some future path”, while X, F, U
preserve their meaning (with respect to the considered future path, which builds given the fixed
past of the current state a linear flow of time). For example, the formula AFEGϕ means: “it is
inevitable that there is some future state such that ϕ will always be true in a possible future of
that state.” And EGAFϕ means: “the current state has a future in which it is inevitable that ϕ

will be true at some future point in time.”

Example 2.7 (Provability logic). Consider an arbitrary formal system S, i.e., a set of formulae
and a consequence relation on this set. For typical formal systems the consequence relation `
will be a reflexive and transitive relation. This gives rise to a modal logic with one modality ♦,
where its dual � is read as: “In S it is provable that”.
There are two cases where such an interpretation is interesting. First, modal logic allows for
an interpretation of formal systems such as intuitionistic propositional logic (which strengthen
the notion of truth to the notion of provability).
The other, even more interesting use case is if the considered formal systems are rather ex-
pressive. In Peano arithmetics (PA), for example, one can express formulae that express their
own unprovability within the system. By Gödel’s incompleteness theorem such formulae are
not provable within PA (and any formal system containing PA), though they are true. But what
about formulae that express their own provability? By Löb’s theorem, in PA the formula ex-
pressing “When I’m provable, I’m true” can be proved in PA only if the self-referential formula
can be proved in PA. In modal-logical terms Löb’s theorem can be expressed by the formula

�(�ϕ→ϕ)→�ϕ.

Example 2.8 (Propositional dynamic logic (PDL)). The language of PDL, LPDL, is slightly
more difficult than the languages considered so far. Let A be a (finite) set of terms (called
atomic programs). Then the set of LPDL-formulae is defined by:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ1∨ϕ2) | 〈π〉ϕ
π ::= a | (π1∪π2) | (π1 ; π2) | π∗ | ϕ?

That is, formulae and programs are defined by a mutual recursion on both formulae and pro-
grams. To explain this in more detail: 〈π〉ϕ means that some execution of program π starting
in the present state will terminate in a state in which ϕ is true. For the programs: π1 ∪π2 is
the program that executes π1 or executes π2 ((non-deterministic) choice). π1;π2 is the program
that executes first π1 and then π2 (composition). π∗ is the program that executes π for a finite
number of times or not at all (iteration). Finally, ϕ? is the program that tests whether ϕ holds.
If so, it continues, otherwise it fails.
If we drop the “test”-constructor, the resulting logic is called regular PDL (and its formulae
can be constructed by a simple recursion and thus within the setting given by Definition 2.5).
Some PDL languages also consider programs that allow for expressing parallel execution of
programs: 〈π1∩π2〉ϕ is true in a state s when there are parallel executions of π1 and π2 and a
state s′ in which ϕ is true such that both executions terminate in s′. We will come back to this
point later.
A nice example of a regular PDL-formula is the Segerberg axiom:

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ).

17



Example 2.9 (Description logics). Description logics (DL) comes with an own syntax that is
closely related to that of modal languages. A typical set of DL-formulae can be split into two
parts, namely formulae that ascribe predicates to objects and formulae that describe termino-
logical knowledge, i.e., conceptual dependencies between predicates. Let 〈NC,NR,NI〉 be a
tuple of pairwise disjoint symbol sets. The elements of NC, NR, NI are referred to as concept
names, role names, and individual names, respectively. Consider then the following rules to
form concepts, roles, assertions, definitions, role specifications, and formulae (in this order):

C ::= A | ⊥ | > | ¬A | ¬C | (C1tC2) | (C1uC2) |
∀r | ∃r | ∀r.C | ∃r.C | ∀≥nr.C | ∃r≥n.C | {a1, . . . ,an}

r ::= R | r1 ◦ r2 | r−1 | r∗

α ::= a : C | (a1,a2) : r | ¬a : C | ¬(a1,a2) : r

δ ::= A ·
=C | C1 vC2

ρ ::= sub(R1,R2) | disj(R1,R2) | trans(R) | refl(R) | irrefl(R) | r1 v r2

ϕ ::= α | δ | ρ

where A ranges over concept names, R,R1,R2 over roles names, and a,a1,a2, . . . ,an over in-
dividual names. By altering the set of allowed constructors one can define a family of rather
expressive description logics. There are by far less expressive languages. For example: AL
allows only negations of atomic concepts, concept intersection, universal restrictions (∀r.C),
and limited existential quantification (∃r). ALC also allows negations of arbitrary concepts. It
is clear that the concept part of ALC can be cast as a modal language in the sense of the term
used here. We will later see that the linkage between modal logic and description goes even
deeper, i.e., some (not all!) DLs can be conceived of as modal logics.
One interesting feature of DLs is that they provide a precise semantics for the Web Ontology
Languages (OWL), a family of languages designed to facilitate the specification of ontologies
developed by the World Wide Web Consortium (W3C). OWL comes in many flavors, for ex-
ample, OWL DL and OWL Lite. The new standard, OWL2, is based on a particular description
logic, the logic SROIQ (D). We will describe the DL naming scheme as well as specific rea-
soning tasks in description logics in a later section.

Example 2.10 (Arrow logic). Arrow logic is a modal logic that enables to talk about enti-
ties that can be graphically depicted as arrows. The similarity type of arrow logic τ→ has a
nullary modality 1′ (identity or skip), a unary modality ⊗ (reverse), and a binary modality ◦
(composition).

b c

a
a is the composition
of b and c.

a

b

b is the reverse
of a.

1′

The skip
arrow 1′.

Figure 2.2: Basic relations between arrows

A natural relational structure for the interpretation of the modal connectives considered in
arrow logic are two-dimensional arrow structures: given a set X , consider a subset A⊆ X×X .
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Then on A the ternary composition relation, the binary reverse relation, and the unary identity
relation are defined by:

C abc :⇔ a0 = b0, a1 = c1, and c0 = b1

Rab :⇔ a0 = b1 and a1 = b0

I a :⇔ a0 = a1

where a = (a0,a1),b = (b0,b1),c = (c0,c1) ∈ A. That is, C abc holds if a is the composition
of arrows b and c, Rab holds if a is the reverse arrow of arrow b, and I a holds if the arrow a
forms a loop. If A is the set of all element pairs from X and the relations I,R,C are defined
on A by the equations above, the relational structure 〈A,C,R, I〉 is called the square over X .
More generally, relational structures of the form 〈A,C,R, I〉 are called arrow frames. Notice
that arrows in arrow frames need not be arrows in a two-dimensional arrow structure.
Examples of such arrow frames arise in various contexts. Consider, for example, a set of func-
tions, groups (in the sense of mathematical group theory), categories (in the sense of category
theory), etc.

2.3 Relational models and satisfaction

Definition 2.6. A frame for a modal similarity type τ = {4i}i∈I (short: τ-frame) is a relational
structure F = 〈S,{Ri}i∈I〉 consisting of a non-empty set S of states (or: possible worlds) and a
family of relations Ri on S such that for each i ∈ I, the arity of Ri is ri +1 whence ri is the arity
of4i. |F | denotes the set of states in F .

For the similarity type of basic modal languages a τ-frame is simply a set S that is equipped
with a family of binary relations: each diamond♦i is associated with exactly one binary relation
in the family. The relations Ri are called accessibility relations. We say that state s sees state
s′ (or: s′ is accessible from s) via Ri if s Ri s′. τ-frames are also often called Kripke frames. An
example of a Kripke frame is depicted in Figure 2.3.

s0

s1

s2

R

R

R

R

R

Figure 2.3: An example of a Kripke frame

Definition 2.7. For a modal language L = Lτ(P), an L-model is a pair M = 〈F ,V 〉 consisting
of a τ-frame F and a valuation function V : P→ 2|F |.

If P is understood, we will refer to Lτ(P)-models as τ-models. In the situation of basic modal
languages τ-models are also called Kripke models. Kripke models can be depicted as directed
multi-graphs that have both a vertex and an edge labeling (see Figure 2.4): vertices are labeled
by a truth assignment and edges by accessibility relations.
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Figure 2.4: An example of a Kripke model

Given an Lτ(P)-model, M = 〈S,{Ri}i∈I,V 〉, we define the satisfaction relation, M |=s ϕ ,
recursively as follows:

M 6|=s ⊥
M |=s p ⇐⇒ s ∈V (p)

M |=s ¬ϕ ⇐⇒ M 6|=s ϕ

M |=s ϕ ∨ψ ⇐⇒ M |=s ϕ or M |=s ψ

M |=s ©i ⇐⇒ s ∈ Ri

M |=s ♦iϕ ⇐⇒ there exists s′ ∈ S with s Ri s′ such that M |=s′ ϕ

M |=s 4i(ϕ1, . . . ,ϕn) ⇐⇒ there exist s1, . . . ,sn ∈ S with Ri ss1 . . .sn such
that for each 1≤ j ≤ n, M |=s j ϕ j

An L-formula ϕ is said to be satisfied in an L-model M at state s ∈ S if M |=s ϕ . [ϕ]M

denotes the set of all states at which ϕ is satisfied in M .

Notice that the condition for unary modal operators is just a special case of the general condi-
tion for modal operators with higher arity.

Definition 2.8. Let ϕ be an L-formula.

(a) ϕ is satisfied in an L-model M if [ϕ]M 6= /0.

(b) ϕ is valid in an L-model M , M |= ϕ , if [ϕ]M = S.

(c) ϕ is satisfiable if it is satisfied in some L-model, i.e., there exists an L-model M and a
state s ∈ |M | such that M |=s ϕ .

(d) ϕ is valid if it is valid in all L-models, i.e., for each L-model M and each state s ∈ |M |,
M |=s ϕ .

In what follows we will omit indices of modal connectives and accessibility relations when
possible.

Lemma 2.2 (Coincidence Lemma). Let M and M ′ be Lτ -models on the same frame F that
coincide on Q⊆ P, i.e., [p]M = [p]M

′
for each p ∈ Q. Then for each formula ϕ in which only

propositional variables from Q occur, it holds [ϕ]M = [ϕ]M
′
, that is, for each state s ∈ |F |,

M |=s ϕ ⇐⇒ M ′ |=s ϕ. C
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Lemma 2.3 (Substitution Lemma). Let σ : P→ Lτ(P) be a substitution and M = 〈F ,V 〉 be
an L-model. Let M σ denote the model 〈F ,V σ 〉 where V σ is defined by V σ (p) := {s ∈ |F | :
M |=s σ(p)}. Then for all formulae ϕ and all states s ∈ |F |,

M σ |=s ϕ ⇐⇒ M |=s ϕ
σ . C

Lemma 2.4. The following formulae are valid in all L-models:

(a) ♦(ϕ ∨ψ)↔ (♦ϕ ∨♦ψ)

(b) �(ϕ ∧ψ)↔ (�ϕ ∧�ψ)

(c) ♦(ϕ ∧ψ)→ (♦ϕ ∧♦ψ)

(d) (�ϕ ∨�ψ)→�(ϕ ∨ψ)

(e) �>

(f) �(ϕ→ψ)→ (�ϕ→�ψ)

(g) �(ϕ→ψ)→ (♦ϕ→♦ψ)

(h) (♦p∧�q)→♦(p∧q)

Furthermore, it holds:

(i) If ϕ is valid in M , then so is �ϕ .

(j) If ϕ is valid and σ : P→ Lτ(P) is a substitution, then ϕσ is valid. C

Note that if ϕ is valid in a model, the formula ♦ϕ need not be valid in the model as well. A
simple (though not minimal) counterexample is presented in Figure 2.5. This example also
shows that �p→♦p is not valid in each Kripke model.

p

s0

p

s1

p

s2

R♦

R♦

p and �p are valid in this model,
but ♦p is not. ♦p is satisfied in
s0 and s1, but not in s2.

Figure 2.5: A Kripke model used as a counterexample

Lemma 2.5. Let M be an Lτ -model with binary relations Ri and R j such that Ri ⊆ R j. Then
the following formulae are valid in M :

1. � jϕ→�iϕ

2. ♦iϕ→♦ jϕ

In particular, if � jϕ is valid in M , then so is �iϕ . And if � jϕ is satisfiable in M , then so is
�iϕ . C
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In what follows we will consider in more detail the satisfaction condition for some of the special
modal logics presented in the previous section.

Example 2.11 (Basic temporal logic). The basic temporal logic with the two diamond op-
erators F and P is usually interpreted over frames 〈T,RF,RP〉, where RP is the converse of
relation RF. Such frames are called bidirectional frames. Frames for the basic temporal logic
are typically just given by some strict order 〈T,<〉 and accordingly temporal models by triples
T = 〈T,<,V 〉, where 〈T,<〉 is a temporal frame and V is a valuation function. Thus the truth
conditions for F and P can be written as follows:

T |=t Fϕ ⇐⇒ T |=t ′ ϕ, for some t < t ′, and

T |=t Pϕ ⇐⇒ T |=t ′ ϕ, for some t ′ < t.

In temporal models the formulae FHϕ→ϕ and PGϕ→ϕ as well as their “duals” ϕ→GPϕ

and ϕ→HFϕ are valid. This follows immediately from the following lemma.

p

t

p

t +1

p

t +2

¬p

t−1

¬p

t−2

RF RF RF RF

RPRPRPRP

The relation RP is the converse of relation RF. The transitive
closures of both relations are not depicted. In t H¬p is true, but
FH¬p is false. For any formula ϕ true at t, GPϕ and HFϕ is
true as well. The gray arrow represents the temporal ordering
(the direction of the flow of time).

Figure 2.6: A temporal model

Lemma 2.6. Let M be an Lτ -model with binary relations Ri and R j such that Ri ⊆ R−1
j . Then

the following formulae are valid in M :

1. ♦i� jϕ→ϕ

2. ϕ→�i♦ jϕ

Moreover, if ♦ jϕ→ψ is valid in M , then so is ϕ→�iψ . C

Example 2.12 (LTL). We first consider LTL without the until operator. To define the semantics
of such LTL formulae, let s = s1 s2 . . . be an infinite sequence of truth assignments si : P→
{0,1}. For i≥ 1, let s[i] denote si and si denote the suffix of s that starts in si, i.e., si := si si+1 . . .
(which, of course, is also an infinite sequence of truth assignments). The semantics of LTL is
usually defined as follows:

s |= p ⇐⇒ s[1](p) = 1

s |= ¬ϕ ⇐⇒ s 6|= ϕ

s |= ϕ ∨ψ ⇐⇒ s |= ϕ or s |= ψ

s |= Fϕ ⇐⇒ si |= ϕ, for some i≥ 1

s |= Xϕ ⇐⇒ s2 |= ϕ
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It is clear that this semantics can also be cast in terms of Kripke models as introduced in this
section. To see this, define such a model M s as follows:

S :=N

RF := Succ∗

RX := Succ

V (s) := { i ∈N : s[i](p) = 1}

where Succ := {(i, i+ 1) : i ∈ N} denotes the successor relation on N. Then for each LTL
formula ϕ and each i ∈N, it holds:

M s |=i ϕ ⇐⇒ si |= ϕ.

In LTL with “until” the truth condition for U is given by

s |= U(ϕ,ψ) ⇐⇒ there exist i ≥ 1 such that si |= ψ and s j |= ϕ

for each 1≤ j < i

which corresponds to the following truth condition for temporal models:

M |=t U(ϕ,ψ) ⇐⇒ there is a t ′ ≥ t with M |=t ′ ψ and M |=t ′′ ϕ

for each t ≤ t ′′ < t ′.

Example 2.13 (Regular PDL). PDL- and in particular regular PDL-formulae are also inter-
preted on Kripke models, but (as in the case of temporal logic) the class of considered PDL-
models is restricted to Kripke-models satisfying the following equations:

Rπ1∪π2 = Rπ1 ∪Rπ2

Rπ1;π2 = Rπ1 ◦Rπ2

Rπ∗ = (Rπ)
∗

that is, the accessibility relations need to satisfy dependency conditions to express the intended
meaning of the constructors of programs.

Example 2.14 (ALC ). As mentioned in Example 2.9, in the description logic ALC complex
concepts are generated from concept names and role names by applying concept negation (¬C),
concept intersection (C1uC2), concept disjunction (C1tC2), universal restrictions (∀r.C), and
existential restrictions (∃r.C). As simple ALC -formulae we confine here to simple assertions
of the form a : C or (a1,a2) : R. To interpret this formal language one considers relational
structures of the form

M =
〈
U,rM

1 , . . . ,rM
n ,CM

1 , . . . ,CM
m ,aM

1 , . . . ,aM
k
〉

where U is a non-empty set (universe). For each role name ri, rM
i is a binary relation on U , for

each concept name C j, CM
j is a subset of U , and for each individual name al , aM

l is an element
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of U . Inductively, we define the interpretation of concept terms as follows:

>M :=U

⊥M := /0

(¬C)M :=U \CM

(CuC′)M :=CM ∩C′M

(CtC′)M :=CM ∪C′M

(∃r.C)M := {x ∈U : there is a y ∈CM with x rM y}

(∀r.C)M := {x ∈U : for each y ∈U with x rM y, y ∈CM }

Then the satisfaction concept for simple ALC -formulae is defined by:

M |= a : C ⇐⇒ aM ∈CM

M |= (a1,a2) : R ⇐⇒ aM RM bM

An ALC -formula ϕ is said to be satisfiable if there exists an ALC -model M with M |= ϕ .

Example 2.15 (Arrow logic). Remember that the modal type of arrow logic, τ→ consists of a
binary operator ◦, a unary one⊗, and a nullary one 1′. Then an arrow model is given by a tuple
M = 〈A,C,R, I,V 〉, where 〈A,C,R, I〉 is an arrow frame (see Example 2.10). The satisfaction
relation then is exactly the satisfaction relation defined for τ→-models, i.e.,

M |=a 1′ ⇐⇒ I a

M |=a ⊗ϕ ⇐⇒ M |=b ϕ , for some b ∈ A with a R b

M |=a ϕ ◦ψ ⇐⇒ M |=b ϕ and M |=c ψ , for some b,c ∈ A with C abc

2.4 Constructing models

In this section we will introduce some basic methods on how models can be constructed from
other methods.

Definition 2.9. Let M = 〈S,{Ri}i∈I,V 〉 and M ′ = 〈S′,{R′i}i∈I,V ′〉 be L-models. A function
f : S→ S′ is called a bounded morphism if the following conditions are satisfied:

(a) f is a homomorphism of the frames (conceived of as relational structures).

(b) For all s ∈ S,s′1, . . . ,s
′
n ∈ S′, if R′i f (s)s′1 . . .s

′
n, then there exist s1, . . . ,sn ∈ S with f (si) = s′i

such that Ri ss1 . . .sn. (If Ri is unary, this condition should be read as: if f (s) ∈ R′i, then
s ∈ Ri.)

(c) For each s ∈ S and each p ∈ P, s ∈V (p) if and only if f (s) ∈V ′(p).

Condition (a) is called the forth condition and (b) the back condition. In the case of basic modal
languages these two conditions can be restated by:

s1 Ri s2⇒ f (s1)R′i f (s2)

f (s1)R′i s′2⇒ s1 Ri s and f (s) = s′2 for some s ∈ S.

Similarly, the concept of bounded morphism between frames, f : F → F ′, is introduced (i.e.
f : S→ S′ is a function satisfying the forth and back conditions of Definition 2.9).
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Proposition 2.7 (Invariance under bounded morphisms). Let f : M →M ′ be a bounded mor-
phism of L-models. Then for each s ∈ S and each L-formula ϕ ,

M |=s ϕ ⇐⇒ M ′ |= f (s) ϕ.

Proof. The proof proceeds by induction on the length of formulae. Indeed, for propositional
variables the claim follows immediately from Definition 2.9(c). And if ϕ is the formula ⊥,
nothing is to be shown.

Assume now that ϕ is a formula of length n and that the claim holds for all formulae of length
< n. If ϕ has the form ¬ϕ ′, it holds

M |=s ¬ϕ
′ ⇐⇒ M 6|=s ϕ

′

⇐⇒ M ′ 6|= f (s) ϕ
′

⇐⇒ M ′ |= f (s) ¬ϕ
′.

In case ϕ has the form ϕ1∨ϕ2, we obtain

M |=s ϕ1∨ϕ2 ⇐⇒ M |=s ϕ1 or M |=s ϕ2

⇐⇒ M ′ |= f (s) ϕ1 or M ′ |= f (s) ϕ2

⇐⇒ M ′ |= f (s) ϕ1∨ϕ2.

If ϕ has the form ©i,

M |=s ©i ⇐⇒ s ∈ Ri ⇐⇒ f (s) ∈ R′i ⇐⇒ M ′ |= f (s) ©i.

Finally if ϕ has the form4i(ϕ1, . . . ,ϕn), we obtain:

M |=s 4i(ϕ1, . . . ,ϕn) ⇐⇒ there are s1, . . . ,sn ∈ S with Ri ss1 . . .sn and
M |=si ϕi for each 1≤ i≤ n

⇐⇒ there are s1, . . . ,sn ∈ S with R′i f (s) f (s1) . . . f (sn) and
M ′ |= f (si) ϕi for each 1≤ i≤ n

⇐⇒ there are s′1, . . . ,s
′
n ∈ S′ with R′i f (s)s′1 . . .s

′
n and

M ′ |=s′i ϕi for each 1≤ i≤ n

⇐⇒ M ′ |= f (s) 4i(ϕ1, . . . ,ϕn).

Here in one direction the forth condition and in the other direction the back condition of
bounded morphisms is used. In all cases the induction hypothesis has been applied to formulae
of shorter length. C

Corollary 2.8. Let f : F → F ′ be a bounded morphism of τ-frames that is surjective. Then
for each formula ϕ , if ϕ is valid in each model defined on frame F , then ϕ is valid in each
model defined on frame F ′.

Proof. We prove the contraposition of the claim: Assume that there is a model M ′ = 〈F ′,V ′〉
and a state s′ of F ′ such that M ′ 6|=s′ ϕ . Define a model M on F by V (p) := {s ∈ S :
M ′ |= f (s) p}. Then f is a bounded morphism of the L-models. Since f is surjective, there
exists an s ∈ S with f (s) = s′. By Proposition 2.7, it follows that M 6|=s ϕ . This shows that ϕ

is not valid in each model over F . C
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Definition 2.10 (Submodel). Let M = 〈S,{Ri}i∈I,V 〉 be an L-model and S′ be a non-empty
subset of S. The L-model M ′ = 〈S′,{R′i}i∈I,V ′〉 defined by

R′i := Ri∩Sri and V ′(p) :=V (p)∩S′

(where for each i ∈ I, ri is the arity of Ri and p ∈ P) is called the submodel of M induced by S′.
Given S′, let <S′> denote the smallest superset of S′ that is closed with respect to all relations
Ri in M , in the following sense: for i ∈ I and s,s1, . . . ,sn ∈ S it holds:

s ∈<S′>, Ri ss1 . . .sn⇒ s1, . . . ,sn ∈<S′>.

Then the submodel of M generated by S′ is the submodel of M that is induced by <S′>. A
generated submodel of M is any submodel that is generated by some subset of S. A point-
generated submodel is a submodel that is generated by a singleton set. When a model is
point-generated by {s0}, we also say that the model is rooted, and refer to s0 as its root.

Proposition 2.9. Let M = 〈S,{Ri}i∈I,V 〉 be an L-model, S′ be a non-empty subset of S, and
M ′ be the submodel of M generated by S′. Then the inclusion function ι : <S′> ↪→ S is a
bounded morphism. In particular, for each s ∈<S′> and each L-formula ϕ ,

M ′ |=s ϕ ⇐⇒ M |=s ϕ.

Proof. It can easily be shown that ι : <S′> ↪→ S is a bounded morphism of L-models. The
second claim then follows immediately from Proposition 2.7. C

Definition 2.11 (Disjoint union). Let {M j} j∈J be a family of pairwise disjoint L-models
M j = 〈S j,{R j

i }i∈I,V j〉, i.e., S j ∩ S j′ = /0 for all j, j′ ∈ J with j 6= j′. Then define an L-model⊎
j∈J M j = 〈S,{Ri}i∈I,V 〉 by

S :=
⋃
j∈J

S j, Ri :=
⋃
j∈J

R j
i , and V (p) :=

⋃
j∈J

V j(p)

(for i ∈ I and p ∈ P). This model is called the disjoint union of the models M j.

Proposition 2.10. Let {M j} j∈J be a family of pairwise disjoint L-models. Then for each
j ∈ J, M j is a generated submodel of

⊎
j∈J M j and the inclusion function ι : M j ↪→

⊎
j∈J M j is

a bounded morphism. That is, for each s ∈ S j and each L-formula ϕ ,

M j |=s ϕ ⇐⇒
⊎
j∈J

M j |=s ϕ.

Proof. In fact, each M j is a submodel (generated by S j) of
⊎

j∈J M j. Thus the claim follows
from Proposition 2.9. C

Example 2.16. Consider the unary modal operator A, semantically defined by: M |=s Aϕ if
and only if for each state s′ ∈M , M |=s′ ϕ . Is there a definition of Aϕ in the basic modal
language (in a way similar as we defined the � operator in terms of ♦)?
Assume that there exists such a definition, i.e., a formula schema α(ϕ) in the basic modal
language such that for each model M and each state s, M |=s α(ϕ) if and only if M |=s Aϕ .
For a fixed propositional variable p, it then holds,

M |=s α(p) ⇐⇒ M |=s Aϕ. (∗)
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Consider now two disjoint models M1 and M2 such that p is true in M1 in every state, but
false in M2 in some state s∗. Let s be a fixed state in M1. Then it follows M1 |=s Ap (by
the assumption on M1), and hence by (∗), M1 |=s α(p). Because α(p) is a formula in the
basic modal language, it follows by Proposition 2.10, M1 ]M2 |=s α(p) and hence by (∗),
M1]M2 |=s∗ p. By Proposition 2.10, we obtain M2 |=s∗ p — in contradiction to the choice of
s∗ in M2.

2.5 Translating modal logic into first-order logic

Modal logic is an extension of propositional logic, syntactically as well as semantically. But
how does modal logic compare to first order logic? From the modal-logical semantics defined
previously it is obvious that modal logic can be embedded into first order logic (FOL). More
precisely, there is a standard translation of modal logic (with the standard relational semantics)
into first-order logic (FOL). In this section we will spell out this translation in a precise way
and we will draw some immediate conclusions from theoretical results concerning FOL.
In what follows, let L := Lτ(P) be a fixed language of modal logic. There is a first order lan-
guage that is associated with Lτ(P) in a natural way, namely the language LFOL := LFOL(τ,P)
with the following alphabet:

• denumerably many variables v0,v1,v2, . . . ;

• for each p ∈ P, a unary relation symbol Fp;

• for each4i ∈ τ , an ri +1-ary relation symbol Ai;

• logical symbols =, ¬,→, ∧, ∨, ∃, and ∀.
That is, the signature of LFOL depends on the set of propositional variables and the similarity
type of Lτ(P).
LFOL-formulae are defined in the usual manner (the set of LFOL-formulae is denoted by LFOL
as well). In particular, this means that for each LFOL-formula ϕ and each variable x, ∀xϕ and
∃xϕ are LFOL-formulae. One should recall usual notions of FOL such as free (occurrence of
a) variable, (variable) assignment, first order structure, etc: for example, a first-order LFOL-
structure is a tuple

S =
〈

U,{AS
i }i∈I,{FS

p }p∈P

〉
where each AS

i is an ri+1-ary relation on U and each FS
p is a subset of U . A variable assignment

in S is simply a function a : V →U and the satisfaction relation is defined by:

S ,a |= Fp(x) ⇐⇒ a(x) ∈ FS
p

S ,a |= Ai(x1, . . . ,xri+1) ⇐⇒ (a(x1), . . . ,a(xri+1)) ∈ AS
i

S ,a |= x = y ⇐⇒ a(x) = a(y)

S ,a |= ¬ϕ ⇐⇒ S ,a 6|= ϕ

. . .

S ,a |= ∃xϕ ⇐⇒ S ,a[x 7→ u] |= ϕ for some u ∈U

S ,a |= ∀xϕ ⇐⇒ S ,a[x 7→ u] |= ϕ for each u ∈U

Here a[x 7→ u] is the variable assignment that coincides with a in the assignment of all variables
except x and assigns u to x. We write S |= ϕ if S ,a |= ϕ for each variable assignment a. For
LFOL-sentences (i.e., formulae in which no variable occurs free) the satisfaction relation does
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not depend on the variable assignment, i.e., for each sentence ϕ , it holds S |= ϕ or S |= ¬ϕ .
A set of LFOL-sentences is satisfiable if there exists an LFOL-structure S with S |= ϕ for each
ϕ ∈ Σ. We write Φ(x) to denote a set of formulae in which at most variable x occurs free.
Such a Φ(x) is called satisfiable if there exists a structure S and an element u ∈U such that
S ,(x 7→ u) |= ϕ for each ϕ ∈ Φ(x) (here (x 7→ u) refers to an arbitrary variable assignment
a with a(x) = u). Alternatively, we may expand LFOL by an individual constant c; then the
set Φ(x)[x/c] resulting from replacing in each formula ϕ ∈ Φ(x) each free occurrence of x by
c is a set of LFOL ∪{c}-sentences. It is easy to see that Φ(x)[x/c] is satisfiable (as a set of
LFOL∪{c}-sentences) if and only if Φ(x) is satisfiable (as a set of LFOL-formulae).

We now define the standard translation of Lτ(P) into LFOL(τ,P), which is a mapping

STx : Lτ(P)→ LFOL(τ,P)

where x is some variable of LFOL. Then define

STx(p) = Fp(x)

STx(⊥) = x 6= x

STx(¬ϕ) = ¬STx(ϕ)

STx((ϕ ∨ψ)) = (STx(ϕ)∨STx(ψ))

STx(©i) = Ai(x)

STx(♦iϕ) = ∃y(Ai(x,y)∧STy(ϕ))

STx(4i(ϕ1, . . . ,ϕri)) = ∃y1 . . .yri(Ai(x,y1, . . . ,yri)∧
∧

1≤ j≤ri

STyi(ϕi))

where y and y1, . . . ,yri are the variables with smallest index (in the sequence v0,v1, . . . ) that
do not occur in STx(ϕ) and all the STx(ϕi), respectively. Notice that in STx(ϕ) exactly one
variable occurs free (not within the scope of a quantifier), namely the variable x.

Example 2.17. As an example consider the formula ♦♦ϕ→♦ϕ . The standard translation of
this formula is

STx(¬♦♦p∨♦p) = ¬∃y(A(x,y)∧∃z(A(y,z)∧Fp(z)))∨∃y(A(x,y)∧Fp(y))),

where y,z are suitable variables of LFOL. This formula is FO-equivalent to:

∃y(A(x,y)∧∃z(A(y,z)∧Fp(z)))→∃y(A(x,y)∧Fp(y))),

and this formula in turn is equivalent to:

∃yz(A(x,y)∧A(y,z)∧Fp(z))→∃y(A(x,y)∧Fp(y)).

By contraposition, we obtain:

∀y(A(x,y)→¬Fp(y))→∀yz(A(x,y)∧A(y,z)→¬Fp(z)).

In section 3 we will see that the formula ♦♦ϕ→♦ϕ is closely related to the transitivity of the
accessibility relation. This connection becomes more obvious if we consider a fixed interpre-
tation of the predicates Fp(v): let us assume that for each variable v,

Fp(v)⇐⇒¬A(x,v)

(note that x is a fixed variable). Thus, the formula on the right-hand side of the equation is
equivalent to

∀yz(A(x,y)∧A(y,z)→A(x,z)).
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This observation is the starting point of the so-called correspondence theory of modal logic.
Correspondence theory deals with the question of which formulae of modal logic correspond to
first order properties of Kripke frames. We will discuss this in more detail in the next section.

How are models of Lτ and models of LFOL related to each other? Let M = 〈S,{Ri}i,V 〉 be an
L-model (i.e., a Kripke model in the case of basic modal languages). Then the ordered pair
SM = 〈S,{ASM

i }i,{F
SM
p }p〉 with

FSM
p :=V (p) and ASM

i := Ri

is an LFOL-structure. Conversely, if S = 〈U,{AS
i }i,{FS

p }p}〉 is an LFOL(τ,P)-structure, then
the triple M S = 〈U,{Ri}i,V 〉 with

Ri := AS
i and V (p) := FS

p

defines an Lτ(P)-model.

Theorem 2.11 (Standard translation into FOL). The mapping M 7→ SM defines a bijection
between the class of Lτ(P)-models and the class of first order LFOL(τ,P)-structures. Moreover,
for each Lτ(P)-formula ϕ , it holds:

(a) M |=s ϕ if and only if SM ,(x 7→ s) |= STx(ϕ);

(b) M |= ϕ if and only if SM |= ∀x STx(ϕ).

Proof. Obviously, (b) follows from (a). And (a) can easily be proven by induction on ϕ . C

2.6 Consequence relation and compactness

In propositional logic, the (semantic) consequence relation, Σ |= ϕ , is defined as follows: ϕ

follows from Σ if each truth assignment that makes all formulae in Σ true, makes ϕ true as well.
In modal logic there are at least two alternative definitions of consequence, since there are
different concepts of a formula being true in a model. In the global reading, Σ |= ϕ means that
for each model in which each formula of Σ is valid, ϕ is valid as well. In the local reading,
Σ |= ϕ means that for each model and each state s in that model in which each formula of Σ is
satisfied, ϕ is satisfied as well. In what follows we use the local definition.

Definition 2.12 (Semantic consequence). The formula ϕ is a consequence of a set of formulae,
Σ, Σ |= ϕ , if in each state s of each model M , M |=s Σ implies M |=s ϕ .

Lemma 2.12. (a) /0 |= ϕ if and only if ϕ is valid.

(b) Σ 6|= ϕ if and only if Σ∪{¬ϕ} is satisfiable. C

FOL is characterized by two properties. First, FOL is compact, i.e., a set of first order sen-
tences (formulae without free variables) is satisfiable if and only if each of its finite subsets is
satisfiable. Secondly, FOL has the Löwenheim-Skolem property, i.e., each set of first order sen-
tences (in a language with countable signature) that is satisfiable in some model is satisfiable
in a model that is defined on a countable domain (here and in what follows, “countable” means
“finite” or “countably infinite”). In fact, as was proven by Lindstroem, FOL is the strongest
logic that is compact and satisfies Löwenheim-Skolem (see Ebbinghaus et al., 2007, chapter
XIII).
In the sequel we will show that analogous results carry over to modal logic. Thereby we will
apply the standard translation introduced above.
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Theorem 2.13 (Compactness for models). Let Σ be a set of Lτ(P)-formulae. If each finite
subset of Σ is satisfiable, then so is Σ.

Proof. Assume that each finite subset of Σ is satisfiable in some L-model. We expand LFOL by
a new individual constant c and consider the set of LFOL∪{c}-formulae

STx/c(Σ) := {(STx(ϕ))[x/c] : ϕ ∈ Σ}.

First we show that each finite subset of STx/c(Σ) is satisfiable (in some first-order structure).
For proof by contradiction assume that there is a finite subset {ϕ1, . . . ,ϕn} of Σ such that

{(STx(ϕ1))[x/c], . . . ,(STx(ϕn))[x/c]}

is not satisfiable. This means that

n∧
i=1

(STx(ϕi))[x/c] = (
n∧

i=1

STx(ϕi))[x/c] = (STx(
n∧

i=1

ϕi))[x/c]

is not satisfiable either. But each finite subset of Σ is satisfiable, in particular {ϕ1, . . . ,ϕn}.
Hence there is a (modal-logical) L-model M with some state s∗ such that M |=s∗

∧n
i=1 ϕi. By

Theorem 2.11 we obtain that SM ,(x 7→ s∗) |= STx(
∧n

i=1 ϕi). SM can be expanded to an LFOL∪
{c}-model S ′ if we set cS ′ := s∗. Obviously S ′ |= (STx(

∧n
i=1 ϕi))[x/c]— in contradiction to

our observation that this set is not satisfiable.
Thus, each finite subset of STx/c(Σ) is satisfiable. By compactness of FOL, STx/c(Σ) must be
satisfiable as well. That is, there exists an LFOL∪{c}-structure S ′ with S ′ |= (STx(ϕ))[x/c] for
each ϕ ∈ Σ. If we “forget” in S ′ the interpretation of c, we obtain an LFOL-structure S with

S ,(x 7→ cS ′) |= STx(ϕ)

for each ϕ ∈ Σ. By Theorem 2.11, it follows

M S |=cS ′ ϕ

for each ϕ ∈ Σ. Thus Σ is satisfiable in M S . C

The compactness theorem stated above can just serve as some initial observation. Usually, one
is interested in compactness results that relate the model of the large set Σ somehow to the
models of its finite subsets. We come back to this point later.

Theorem 2.14 (Löwenheim-Skolem). Let L be a basic modal language with countably many
propositional variables and Σ be a set of L-formulae. If Σ is satisfiable in some L-model, then
Σ is satisfiable in a countable L-model M (i.e., M is defined on a finite or countably infinite
set of states).

Proof. Assume that Σ is satisfiable. That is, there exists an L-model M with a state s such that
M |=s Σ. By Theorem 2.11, we obtain that

SM ,(x 7→ s) |= STx(Σ),

i.e., the set of sentences STx/c(Σ) is satisfiable in an LFOL ∪{c}-structure (again c is a new
individual constant). Since FOL has the Löwenheim-Skolem property, STx/c(Σ) is satisfiable
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in a countable LFOL∪{c}-structure S ′, i.e., if we drop c from the signature, S ′ can be reduced
to an LFOL-structure S with

S ,(x 7→ cS ′) |= STx(Σ),

By Theorem 2.11, S defines an Lτ -model M S such that

M S |=cS ′ Σ,

which is obviously countable. Thus, Σ is satisfiable in a countable L-model. C

2.7 Expressiveness

What is the expressive power of modal logic? What can be expressed by modal formulae?
The key idea to investigate such questions is that expressiveness of a formal language can be
measured by its power of making distinctions between different “situations”. Adapted to our
context, we can put it more precisely as follows: Consider Kripke models M and M ′ and
states s and s′ of M and M ′, respectively. Is there any modal formula by which s and s′ can be
distinguished?

Definition 2.13. The type of s in M is defined as the set

TM (s) := {ϕ : M |=s ϕ}.

States s and s′ are said to be modally equivalent, s≡M ,M ′ s′, if TM (s) = TM ′(s′).

As has been proven in section 2.4, a sufficient criterion for modal equivalence is the existence
of a bounded morphism, i.e., if f is a bounded morphism from M to M ′, then for each state s
of M ,

s≡M ,M ′ f (s).

However, the converse of this observation does not hold in general.
A somewhat weaker notion than that of a bounded morphism is that of bisimulation. We will
see that modal equivalence follows from bisimilarity and that there is a fairly wide class of
models where the converse of this implication holds, too. For the sake of simplicity we confine
to basic modal languages with one modality.

Definition 2.14. Let M = 〈S,R,V 〉 and M ′ = 〈S′,R′,V ′〉 be Kripke models for L♦(P). A
non-void relation Z ⊆ S× S′ is said to be a bisimulation between M and M ′ if the following
conditions are satisfied:

(a) For all s,s′ with s Z s′ and each p ∈ P, s ∈V (p) if and only if s′ ∈V ′(p);

(b) If s Z s′ and s Rt, then there exists a t ′ ∈ S′ with t Z t ′ and s′ R′ t ′ (forth condition);

(c) If s Z s′ and s′R′t ′, then there exists a t ∈ S with t Z t ′ and s Rt (back condition).

States s and s′ are called bisimilar, s!M ,M ′ s′, if there exists a bisimulation Z between M
and M ′ with s Z s′.

Obviously, the notion of bisimulation provides a generalization of the notion of p-morphism: p-
morphisms are exactly those bisimulations that are left-total and functional. Before illustrating
this new concept by examples, we mention a fundamental statement.
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Proposition 2.15. Let M = 〈S,R,V 〉 and M ′ = 〈S′,R′,V ′〉 be Kripke models. Let s ∈ S and
s′ ∈ S′ be states such that s!M ,M ′ s′. Then s and s′ are modally equivalent, i.e., for each
formula ϕ ,

M |=s ϕ ⇐⇒ M ′ |=s′ ϕ.

Proof. Straight forward, see the proof of Proposition 2.7. C

In the situation depicted in Figure 2.7, the states s and s′ are bisimilar if we assume that in
all nodes all propositional variables are true. The bisimulation presented there is a bounded

s

R R

R

s′

R′

R′

R′

Figure 2.7: Example of a bisimulation

morphism, obviously. But in general, not each bisimulation defines such a morphism. In the
situation of Figure 2.8, for example, we can construct step by step a bisimulation from the
initial link between states s and s′. However, it can be shown that there does not exist any
bounded morphism f from the model on the left-hand side to that on the right-hand side with
f (s) = s′.

s

R

R R

s′

R′

R′

R′

R′

Figure 2.8: Is there a bisimulation with s Z s′?

A more interesting, but also more technical example is given by a new kind of model construc-
tion, namely by the method of “unraveling” a Kripke model. More precisely, it can be shown
that for each rooted Kripke model, there exists a tree-like Kripke model such that the roots of
the models are bisimilar.
To see this, let M = 〈S,R,V 〉 be a Kripke model with root s0 ∈ S. Define a tree-like model,
M tree

s0
= 〈S′,R′,V ′〉, by

S′ :=
{

s : s is a finite R-chain of length ns > 0 with s[1] = s0
}

R′ :=
{
(s, t) ∈ S′×S′ : s = (s0, . . . ,sn), t = (s0, . . . ,sn,sn+1)

}
V ′(p) :=

{
s ∈ S′ : s = (s0, . . . ,sn) ∈ S′ and sn ∈V (p)

}
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Then the relation

Z :=
{(

s, t
)
∈ S×S′ : t = (s0, . . . ,sn) and sn = s

}
defines a bisimulation between M and M tree

s0
. Moreover, the mapping

f : M tree
s0
→M , (s0, . . . ,sn) 7→ sn

defines a surjective bounded morphism from M tree
s0

to M . Figure 2.9 depicts a simple example.

0

1

R

R

0

01 00

001 000

R′ R′

R′ R′

Figure 2.9: Unraveling a simple Kripke model

In general, the converse of Proposition 2.15 does not hold (see exercises). However, if we
restrict consideration on image-finite models, then it is possible to establish that bisimilarity
follows from modal equivalence.

Definition 2.15. Let M = 〈S,R,V 〉 be a Kripke model. M is said to be image-finite if for each
s ∈ S,

sR := {s′ ∈ S : s R s′}

is finite.

Note that each finite model is image-finite.

Theorem 2.16 (Hennessy & Milner). Let M and M ′ be image-finite Kripke models. Then for
each state s of M and each state s′ of M ′,

s≡M ,M ′ s′ ⇐⇒ s!M ,M ′ s′.

Proof. The direction from right to left follows from Proposition 2.15. For the other direction
we show that the relation

Z :=
{
(s,s′) ∈ S×S′ : s≡M ,M ′ s′

}
defines a bisimulation between M and M ′. Condition (a) of Definition 2.14 is clear. For
condition (b) let us suppose that s ≡M ,M ′ s′ and that s R t. Since M ′ is image-finite, we may
assume that

s′R′ = {s′0, . . . ,s′n}
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with s′0, . . . ,s
′
n ∈ S′. Note that s′R′ is not empty: otherwise, M |=s′ �⊥, hence by s≡M ,M ′ s′,

M |=s �⊥ and thus, by s Rt, M |=t ⊥. Assume now for proof by contradiction that there does
not exist any t ′ ∈ S′ with s′ R′ t ′ and t ≡M ,M ′ t ′, i.e., for each s′i ∈ s′R′, there is a formula ϕi

such that
M |=t ϕi and M ′ 6|=s′i ϕi.

Then it follows that
M |=s ♦(ϕ0∧·· ·∧ϕn),

and hence, by s≡M ,M ′ s′,
M ′ |=s′ ♦(ϕ0∧·· ·∧ϕn).

Thus, there exists an s′i ∈ s′R′ with

M ′ |=s′i ϕ0∧·· ·∧ϕn

— in contradiction to M ′ 6|=s′i ϕi. The proof of condition (c) is similar to that of (b), using the
fact that M is image-finite. C

How can the modal fragment can be characterized? Or, to put the question in other words:
Which first order formulae are equivalent to the standard translation of some modal formula?

Definition 2.16. Let ϕ(x) be a LFOL(τ,P)-formula in which exactly one variable x occurs free.
ϕ(x) is said to be invariant under bisimulation if for each pair of Kripke models M and M ′,
each pair of possible state s and s′ of M and M ′, respectively, and each bisimulation Z between
M and M ′ with s Z s′, it holds

MFOL,x 7→ s |= ϕ(x) ⇐⇒ M ′
FOL,x 7→ s′ |= ϕ(x).

In terms of invariance under bisimulation the modal fragment can the ben characterized as
follows.

Theorem 2.17 (van Benthem). Let ϕ(x) be a LFOL-formula in which exactly one variable x
occurs free. Then the following statements are equivalent:

(a) ϕ(x) is equivalent to the standard translation STx(ψ) of some Lτ(P)-formula ψ .

(b) ϕ(x) is invariant under bisimulation. C

In this context it is worthwhile to discuss a game-theoretical characterization of bisimulations.
Let M = 〈S,R,V 〉 and M = 〈S′,R′,V ′〉 be Kripke models, and let s0 and s′0 be states of M and
M ′, respectively. The bisimulation game is then defined as follows:

• There are two players A (‘attacker’, ‘spoiler’) and D (‘defender’, ‘duplicator’). A seeks to
show that there does not exist any bisimulation Z between M and M ′ with s0 Z s′0, while
D tries to prevent this.

• The game is played in rounds (where the number of rounds, n, is fixed before the game
is started). There are two variants: the finite game and the infinite one (i.e., the game is
played over infinitely many rounds).
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• If s0 and s′0 differ in the interpretation of at least one propositional variable, then A wins
the game.

• In the first round A chooses in one of the models M or M ′ a successor of the current
state, i.e., an R-successor s1 of s0 or an R′-successor s′1 of s′0. If A is not able to find such a
successor, then A loses the game. If A finds a successor, then D has to choose a successor
of the current state in the other model. For example, D has to choose an R-successor
s1 of s0 provided that A has chosen an R′-successor s′1 of s′0. If D is not able to find a
successor, she will lose the game. If both A and D were able to find successors and if
these successors differ in the interpretation of at least one propositional variable, then A
wins the game. Otherwise we continue the game as in round 1, but with the pair of current
states (s0,s′0) replaced by the new pair of successor states (s1,s′1).

• In the finite game, i.e., in the game over a given number n of rounds, if A has not won
the game after n rounds, then A loses the game. In the infinite game, if A has not won the
game after a finite number of rounds, A loses the game.

• Thus, while the game runs, (possibly infinite) sequences of states are constructed in both
models. In each round, the defender is to imitate the behavior of the attacker in the re-
spective other model.

• Let Gn
M ,M ′(s,s′) denote the finite game over n rounds that starts at states s and s′. The

infinite game starting at s and s′ is denoted by G∞

M ,M ′(s,s′).

A strategy is a function that tells each player for each finite sequence (s0,s′0), . . . ,(sn,s′n) of
moves in the game how she/he has to continue the game. For the attacker, the strategy says
which model and successor is to be selected; for the defender, the strategy instructs how to
respond to the attacker’s move.
Games as the bisimulation game are often called pebble games, as we can mark the current
state of the game by using two pebbles, and each action of the palyers can be represented as a
move of one pebbles along one of the arcs in the model.

We illustrate these basic concepts of bisimulation games by discussing some examples.

Example 2.18. Consider the models given in Figure 2.10. If in the first round of G1
M ,M ′(s0,s′0),

A chooses s1 in the left model, then D is able to imitate this by choosing s′1, i.e., D will win that
game. But, if A chooses s′2 in the right model, then D has to choose s1, and thus D loses this
game. Thus, A has a strategy for winning the game, while D has not.

p

s0

p

s1

R

ps′0

ps′1 ¬p s′2

R′ R′

Figure 2.10: A bisimulation game: A can easily win the game
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Example 2.19. Let us now consider the situation presented in Figure 2.11. Here A has various
strategies for winning G2

M ,M ′(s0,s′0). For example, if A chooses in the model on the right side
s′3, then D has to choose s1. Then A chooses s2 (note that A changes the model). Thus, D has
to choose s′4, but then she loses the game. Another strategy: In the first round, A chooses s1 in
the model on the left side. Then D has to choose between s′1 and s′3. But in each of both cases
A can win the game by choosing s3 or s2, respectively.

ps0

ps1

p

s2

¬p

s3

R

R R

ps′0

p

s′1

p

s′2

p

s′3

¬p

s′4

R′

R′

R′

R′

Figure 2.11: Another example of a bisimulation game: A can win again

Without proof we now present the following theorems:

Theorem 2.18 (see Goranko and Otto (2007), Prop. 28). Let M = 〈S,R,V 〉 and M = 〈S′,R′,V ′〉
be Kripke-models, let s be a state of M , and let s′ be state M ′. Then the following statements
are equivalent:

(a) D has a strategy for winning G∞

M ,M ′(s,s′).

(b) There exists a bisimulation Z between M and M ′ with s Z s′. C

The basic insight used in the proof of this theorem is that bisimulations can be interpreted as
winning strategy for the defender, and vice versa.

Theorem 2.19 (see Goranko and Otto (2007), Theorem 32). Let L♦(P) be a basic modal logic
with finitely many propositional variables. Let M = 〈S,R,V 〉 and M ′ = 〈S′,R′,V ′〉 be Kripke
models and let s and s′ be states of M and M ′, respectively. Then the following statements are
equivalent:

(a) D has a strategy for winning Gn
M ,M ′(s,s′).

(b) For all formulae ϕ of Lτ(P) with depthϕ ≤ n,

M |=s ϕ ⇐⇒ M ′ |=s′ ϕ C
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3 Normal Modal Logics, Frame Classes, and Definability

In this section we introduce the concept of normal modal logics. We will discuss how classes
of frames can be defined by axioms, how modal logics can be axiomatized, and a standard
procedure for proving soundness and completeness of such axiomatizations. Moreover, we
will learn more on special uni-modal logics.

3.1 Normal modal logics

In what follows we will confine to basic modal languages with a countable set of proposi-
tional variables. Often we even confine to modal languages with a single modality. Almost all
concepts can be generalized to arbitrary modal languages in a straightforward way.

We start by introducing a rather general concept of modal logics.

Definition 3.1. A modal logic is a set of Lτ(P)-formulae, Λ, that contains all propositional
tautologies and is closed under modus ponens and (uniform) substitution, that is,

(a) If ϕ ∈ Λ and ϕ→ψ ∈ Λ, then ψ ∈ Λ.

(b) If ϕ ∈ Λ and σ : P→ Lτ(P) is a substitution, then ϕσ ∈ Λ.

A modal logic Λ is said to be normal if furthermore the following conditions are satisfied:

(c) Λ contains all valid Lτ(P)-formulae.

(d) Λ is closed under necessitation for each τ-modality ♦, i.e., if ϕ ∈ Λ, then �ϕ ∈ Λ.

Recall the small list of valid formulae presented in Lemma 2.4. All these formulae are con-
tained in any normal modal logic, but not in every modal logic.

Remark 3.1. In the case of non-basic modal languages condition (d) in Definition 3.1 needs
to be adapted. More precisely, (d) has to be replaced by

(d) If ϕ ∈ Λ, then5(⊥, . . . ,ϕ, . . . ,⊥) ∈ Λ.

Notice that no special requirements are imposed for 0-ary modalities.

Instead of conditions like “all propositional tautologies” or “all valid formulae”, one may re-
sort to appropriate axiomatizations. For example, in order to guarantee that Λ contains all
propositional tautologies (see Definition 3.1), it suffices to require that all formulae of an ax-
iomatization of propositional logic are included in Λ. In a similar way, for normal logics it is
sufficient that Λ contains all formulae of a suitable axiomatization of the set of formulae that
are valid in all models. As we will later see, for basic modal languages the following axioms
suffice (see also Lemma 2.4):

K �(p→q)→ (�p→�q)

Dual ♦p↔¬�¬p

Notice that in a setting in which the boxes � are chosen as primitives, axiom (Dual) is not
needed.

More generally, axiom K can be replaced by:

Ki
5 5(. . . , p→q, . . .)→ (5(. . . , p, . . .)→5(. . . ,q, . . .))
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It is easy to see that formulae of this form are valid in all models.

Some important examples of modal logics and normal modal logics are presented in the fol-
lowing list.

Example 3.1. (a) The set of all Lτ -formulae is a normal modal logic, the inconsistent (nor-
mal) modal logic.

(b) If {Λi}i∈I is a family of normal modal logics, then the intersection of all these logics⋂
i Λi is a normal modal logic. In particular, for each pair of normal modal logics, Λ1 and

Λ2, Λ1∩Λ2 is a normal modal logic.

(c) Given a single frame F or a class of frames, C , the sets

Λ(F ) := {ϕ ∈ L : F |= ϕ}
Λ(C ) := {ϕ ∈ L : F |= ϕ for each F in C}

are normal modal logics, the normal modal logics of F and C , respectively. Recall that
ϕ is valid in a frame F , F |= ϕ , if it is valid in each model defined on that frame.

(d) Given a set of L-formulae Γ, there exists a smallest normal modal logic that contains Γ

as a subset. This logic is called the normal modal logic axiomatized by Γ and is denoted
by Λ(Γ).

Remark 3.2. Are there “modal logics” that are not normal? Of course, the smallest modal
logic is not a normal modal logic (since it does not contain axiom K or its variants). In fact, the
smallest modal logic is just propositional logic on top of a language with quasi-atoms (namely
formulae of the form ♦ϕ or4ϕ). But there are also more interesting non-normal modal logics,
quasi-normal modal logics, regular modal logics, etc. Quasi-normal modal logics are modal
logics that contain all theorems of K, but in which the application of the necessitation rule is
somehow restricted (for example the Lewis systems S2 and S3 are quasi-normal). The main
semantic difference is that in such systems validity of a formula is evaluated as truth in some
selection of normal states. In regular modal logics the necessitation rule is replaced by the
weaker rule: If ϕ→ψ ∈ Λ, then �ϕ→�ψ ∈ Λ.

Remark 3.3. We have introduced normal modal logics that are defined in terms of frames or
frame classes and normal modal logics defined in terms of “axioms”. Both concepts should
be kept apart carefully. In what follows we will study the connection between these concepts
in more detail: for example, which normal modal logics (that is, a set of formulae) can be
axiomatized by a set of formulae (Λ = Λ(Γ) for some set of formulae Γ?) and which normal
modal logics are the normal logics defined by some (frame or) class of frames (Λ = Λ(C ) for
some frame class C ?).

For basic modal languages L with exactly one modality, the smallest normal modal logic is
called K, for basic modal languages with m diamonds, the smallest normal modal logic is
called K(m). In the general, polyadic case the smallest normal modal logic is called Kτ , where
τ is the modal similarity type of the considered modal language. All these logics are the normal
modal logics that are axiomatized by the empty set.
Further normal modal logics can be generated on top of K if we consider the modal logics
axiomatized by additional formulae. Prominent examples are the “axioms”:

T �p→ p (alternatively: p→♦p)

40



4 �p→��p (alternatively: ♦♦p→♦p)

E ♦p→�♦p (alternatively: ♦�p→�p)

B p→�♦p (alternatively: ♦�p→ p)

D �p→♦p

.3 ♦p∧♦q→♦(p∧♦q)∨♦(p∧q)∨♦(♦p∧q)

L �(�p→ p)→�p

Then, for example, the smallest normal modal logic that contains axiom T is called KT, the
normal modal logic axiomatized by {T,B} is called KTB, etc. Prominent examples are the
logics K4, KB, KBE, KD4, KDB, KL. Even more prominent logics have a special name such
as S4 (= KT4) or S5 (= KTE = KT4B). The latter example shows that, in general, the set of
axioms used to generate the normal modal logic is not unique. Finally, some modal logics such
as S4 are the basis for new modal logics, for example, S4.1, S4.3, etc. Some of them will be
studied later in more detail.

Remark 3.4. In general, if Γ⊆ Γ′, then Λ(Γ)⊆Λ(Γ′). Thus, for some of the above mentioned
modal logics it is quite easy to see whether they are contained in another normal modal logic.
More generally, it holds that if Γ ⊆ Λ(Γ′), then Λ(Γ) ⊆ Λ(Γ′). Hence it suffices to show
that all the axioms in Γ are contained in Λ(Γ′) (i.e., they are “derivable” from Γ′ using an
axiomatization of K and the “axioms” in Γ′).

Remark 3.5. Notice that adding axioms to system K may even result in the inconsistent logic.
An example is the axiom set {T,L}, i.e., the modal logic KTL coincides with the inconsistent
modal logic.

3.2 Kripke frames and definability

What makes the relational semantics interesting is the close connection between valid “axioms”
and formal properties of the accessibility relation in Kripke frames. In this section we will
throw a first glance on this connection. For the sake of simplicity, we will consider unimodal
languages. Then it is convenient to talk about reflexive, transitive, etc., Kripke frames, when
the accessibility relation has the respective property.

Proposition 3.1. A Kripke frame F is reflexive if and only if axiom T is valid in F .

Proof. Assume first that F = 〈S,R〉 is a reflexive frame, and let M be an arbitrary Kripke
model defined on F . For each s ∈ S, if M |=s p, then by reflexivity, there exists a state s′ ∈ S
with s R s′ and M |=s′ p, namely state s. Hence M |=s ♦p. This shows that T is satisfied in
each state in each model defined on F .
For the other direction, assume that T is valid in F . We have to show that F is reflexive, i.e.,
sRs for each s ∈ S. For an arbitrary s ∈ S define a model Ms on F with V (p) = {s}. Since T is
valid in F , it follows that Ms |=s p→♦p. Because of Ms |=s p, it follows Ms |=s ♦p. Hence
there exists an s′ ∈ S with s R s′ and Ms |=s′ p. Then it follows s = s′ and hence s R s. C

Proposition 3.2. A Kripke frame F is transitive if and only if axiom 4 is valid in F .

Proof. Assume first that F = 〈S,R〉 is a transitive frame, and let M be a Kripke model defined
on F . For each s ∈ S, if M |=s ♦♦p, then there exist states s′,s′′ such that s R s′, s′ R s′′, and
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M |=s′′ p. By transitivity of R, it follows s R s′′ and hence M |=s ♦p. This shows that 4 is
satisfied in each state in each model defined on F .
For the other direction, assume that 4 is valid in F . We have to show that F is transitive, i.e.,
for all s,s′,s′′ ∈ S, s R s′ and s′ R s′′ implies s R s′′. For arbitrary such s,s′,s′′ define a model
M on F with V (p) = {s′′}. Then it holds M |=s′′ p, hence M |=s′ ♦p, and consequently,
M |=s ♦♦p. Since 4 is valid in F and thus in M , it follows M |=s ♦p. Thus there exists a
state s′′′ with s R s′′′ and M |=s′′′ p. Since p is true in s′′ only, it follows s′′ = s′′′ and hence
s R s′′— as to be shown. C

As indicated in Example 2.17, a different proof of the back direction could be as follows:
consider s,s′,s′′ ∈ S, with s R s′ and s′ R s′′. Define a model M on F by V (p) := S\R[s]. Then
it follows M 6|=s ♦p (otherwise there would be an s′′′ ∈ S with s R s′′′ and M |=s′′′ p, and hence
s′′′ ∈ R[s] and s′′′ ∈ V (p)— in contradiction to the definition of V (p)). Since 4 is valid in M ,
we obtain M 6|=s ♦♦p. Because of s R s′, we can conclude M 6|=s′ ♦p, and thus M 6|=s′′ p. By
definition of V (p), we obtain s′′ ∈ R[s], i.e., s R s′′— as to be shown.

Proposition 3.3. A Kripke frame F is Euclidean if and only if axiom E is valid in F .

Proof. Exercise. C

Proposition 3.4. A Kripke frame F is symmetric if and only if axiom B is valid in F .

Proof. Exercise. C

Proposition 3.5. A Kripke frame F is serial if and only if axiom D is valid in F .

Proof. Exercise. C

All these propositions claim that certain classes of frames are definable by formulae.

Definition 3.2. Let ϕ be an Lτ -formula, and let C and D be a classes of τ-frames.

(a) ϕ is said to define (or: characterize) C within D if for each τ-frame in D , F is in C if
and only if F |= ϕ .

(b) ϕ is said to define (or: characterize) C if ϕ defines C within the class of all τ-frames.

(c) In a similar way, we say that a set of Lτ -formulae ∆ defines (or characterizes) a class of
frames (possibly within some other class of frames).

So what we have proven above is that T defines the class of reflexive frames, 4 the class of
transitive frames, B the class of symmetric frames, E the class of Euclidean frames, etc.

But what about the following axioms? Do similar “correspondence” results hold there as well?

Tc p→�p

Triv p↔�p

E1 �♦�p→ p

E2 ♦�p→�♦��p

Dc ♦p→�p
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D1 �(�p→q)∨�(�q→ p)

F (�♦p∧�♦q)→♦(p∧q)

M �♦p→♦�p

G1 ♦�p→�♦p

BM p→�♦♦p

TM ♦�p→♦p

Lem0 �(p∧�p→q)∨�(q∧�q→ p)

H �(�p↔ p)→�p

Altn �p1∨�(p1→ p2)∨·· ·∨�(p1∧·· ·∧ pn→ pn+1)

N1 �(�(p→�p)→ p)→ (♦�p→ p)

H1 p→�(♦p→ p)

G0 ♦(p∧�q)→�(p∨♦q)

J1 �(�(p→�p)→ p)→ p

. . .

Candidate frame properties are the properties mentioned in Definition 2.1 and the following:

(a) The frame consists of a single reflexive state.

(b) The frame consists of single dead end.

(c) The frame consists of a single state.

(d) In the frame each state sees at most one state.

(e) In the frame each state sees at most n worlds.

(f) In the frame each state sees a dead end.

(g) The frame is convergent.

(h) The frame is universal.

(i) The frame is finite, reflexive, transitive, and symmetrical.

(j) The frame is finite, irreflexive, and transitive.

(k) . . .

Similar to the first-order language considered for the standard translation of a modal language,
we can define the first-order frame language of a modal similarity type τ , LFOL(τ): just drop
the unary relation symbols introduced for the translation of propositional letters of Lτ(P). This
language is also called the first-order correspondence language for τ . Given a modal formula
ϕ and a formula α of the frame language, ϕ and α are called frame correspondents if the
same class of frames is defined by ϕ and α , that is F |= ϕ ⇐⇒ F |= α for each τ-frame F
(“F |= ϕ” means that the modal formula is valid in F , while “F |= α” means that α is true
in F when F is conceived of as a first-order structure for the language LFOL(τ)). The results
presented above then can be restated as follows: T is the frame correspondent of ∀xx R x, B the
frame correspondent of ∀xy(x R y→ y R x), etc.
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Remark 3.6. Note that there exist modal formulae that do not have a frame correspondent in
the first-order frame language, but only in some higher-order frame language (for example,
the PDL axiom [π∗](p→ [π]p)→ (p→ [π∗]p)). Another example is the McKinsey formula M
�♦p→♦�p that does not have a correspondent in the first-order frame language (which can
be proven by a particular version of the Löwenheim-Skolem theorem).

We finally add an example that provides a relative definability result:

Proposition 3.6. In the class of reflexive and transitive frames, M defines the “finality condi-
tion”:

∀s∃s ′(s R s′∧∀s ′′(s′ R s′′→ s′ = s′′)).

Proof (sketch). Let F be any frame that satisfies the finality condition. Let s be some state in
an arbitrary model M on F such that M |=s �♦p. Since s sees a final state s′ (that can see
at most itself), it holds M |=s′ ♦p, i.e., there is a state s′′ with s′ R s′′ and M |=s′′ p. Now s′ is
final, hence s′ = s′′, hence M |=s′ p, and moreover M |=s′ �p, which shows that M |=s ♦�p.
For the other direction let F be a reflexive and transitive frame in which M is valid. For proof
by contradiction, assume that the frame does not satisfy the finality condition. Hence there is
a state s0 in F that cannot see a final state. s0 itself cannot be a final state, since otherwise, by
reflexivity, s0 could see a final state (namely itself). But then there must be a state s1 6= s0 with
s0 R s1 and this s1 cannot be a final state (as otherwise s0 could see a final state), either. But
then again s1 can see a different non-final state s2 (possibly s1), and so on.
Notice that not only s0 cannot see a final state, but by transitivity, also all its R-successors
cannot. Define now a model on that frame in such a way that each state that is seen by s0 sees
a state in which p is true and sees another state in which p is not true. Then M |=s0 �♦p and
M 6|=s0 ♦�p. C

As it is shown in Blackburn et al. (2002), the reflexivity condition is not needed. That is, M
also defines the finality condition within the class of transitive frames.
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3.3 Proving theorems

So far, we have studied modal logics primarily from a semantic point of view. In what follows
we provide some proof-theoretic notions. For the sake of simplicity, we consider a fixed modal
language Lτ(P) with one diamond. Not exactly: for a smooth presentation we will switch
to a different set of logical primitives: we take {¬,→} as propositional basis and assume
that ♦ is defined by � (it is convenient to consider only negation, implication, and universal
quantification in Hilbert-style deduction systems).
In such a setting the following axioms together with the modus ponens rule and the rule of
uniform substitution provide a sound and complete axiomatization of propositional logic.

PL1 p→ (q→ p)

PL2 (p→ (q→ r))→ ((p→q)→ (p→ r))

PL3 (¬p→¬q)→ (q→ p)

This means: a formula is a propositional tautology if and only if there exists a proof for it in
this axiomatization. A proof is a finite sequence of formulae ϕ1, . . . ,ϕn in which each formula
is an axiom or the result of applying one of the rules on previous formulae in the sequence. For
propositional logic, modus ponens and the substitution rule are often written in the form:

MP ` ϕ, ` ϕ→ψ =⇒` ψ

US ` ϕ =⇒` ϕσ , where σ is a substitution.

In a sequence of formulae ϕ1, . . . ,ϕn, ϕn is a result of applying MP on the formulae ϕi and
ϕ j (i, j < n) if ϕ j is the formula (ϕi→ϕn). And, ϕn is a result of applying US on formula ϕi

(i < n) if there exists a substitution σ such that ϕn = ϕσ
i .

Definition 3.3. A K-proof is a finite sequence of Lτ -formulae ϕ1, . . . ,ϕn in which each formula
is a propositional tautology, axiom K, or the result of applying one of the rules MP, US or the
necessitation rule

R-� ` ϕ =⇒`�ϕ

on previous formulae in the sequence.
A formula ϕ is called a K-theorem, written `K ϕ , if there exists a K-proof ϕ1, . . . ,ϕn with
ϕn = ϕ .

Remark 3.7. In a similar way we can introduce concepts like KD-proof, KT-provable, S4-
theorem, etc. (see section 3.1). For example, a KD-proof is a proof in which the “characteristic
axiom” D of that modal logic may be used as an axiom.

Remark 3.8. In the chosen set of modal connectives ♦ is introduced by definition. That is, ♦ϕ

is just an abbreviation of ¬�¬ϕ . Hence Dual (♦p↔¬�¬p) is a trivial K-theorem.

Following we list some K-theorems and “derived rules”.

Lemma 3.7.
(a) `K ϕ→ψ =⇒`K �ϕ→�ψ

(b) `K ϕ ↔ ψ =⇒`K �ϕ ↔�ψ

(c) `K ϕ ↔ ψ =⇒`K ♦ϕ ↔ ♦ψ

(d) `K >↔�>
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(e) `K (�ϕ ∧�ψ)↔�(ϕ ∧ψ)

(f) `K (�ϕ ∨�ψ)→�(ϕ ∨ψ)

(g) `K (�ϕ ∧♦ψ)→♦(ϕ ∧ψ)

Proof. (a) is a derived rule that we obtain easily: if there is a proof of ϕ→ψ , then we can
extend this proof as follows:

n. ϕ→ψ

n+1. �(ϕ→ψ) R-�: n
n+2. �(p→q)→ (�p→�q) K
n+3. �(ϕ→ψ)→ (�ϕ→�ψ) US: n+2
n+4. �ϕ→�ψ MP: n+1, n+3

For (b) and (c) the argument is quite similar. For (d) consider the following proof:
1. > PL
2. �>→ (>→�>) PL
3. �> R-�: 1
4. >→�> MP: 3, 2
5. >→ (�>→>) PL
6. �>→> MP: 1, 5
7. (�>→>)→ ((>→�>)→ (>↔�>)) PL
8. (>→�>)→ (>↔�>) MP: 6, 7
9. >↔�> MP: 4, 8

For (e) consider the following proof:
1. ϕ ∧ψ→ϕ PL
2. �(ϕ ∧ψ)→�ϕ (a): 1
3. ϕ ∧ψ→ψ PL
4. �(ϕ ∧ψ)→�ψ (a): 3
5. �(ϕ ∧ψ)→ (�ϕ ∧�ψ) PL: 2, 4
6. ϕ→ (ψ→ (ϕ ∧ψ)) PL
7. �ϕ→�(ψ→ (ϕ ∧ψ)) (a): 6
8. �(p→q)→ (�p→�q) K
9. �(ψ→ (ϕ ∧ψ))→ (�ψ→�(ϕ ∧ψ)) US: 8

10. �ϕ→ (�ψ→�(ϕ ∧ψ)) PL: 7, 9
11. (�ϕ ∧�ψ)→�(ϕ ∧ψ) PL: 10
12. (�ϕ ∧�ψ)↔�(ϕ ∧ψ) PL: 11, 5

The other proofs are left as an exercise. C

It is clear that the “derived rules” (a), (b), and (c) in the lemma also hold for all extensions of
K. Moreover, by induction, one can easily show that also the following rule can be derived:

`K ϕ1∧·· ·∧ϕn→ψ =⇒`K �ϕ1∧·· ·∧�ϕn→�ψ.

Remark 3.9. We did not introduce a deducibility relation Σ `K ψ . The usual meaning of
Σ `K ψ is that ψ is provable when we assume Σ. But it is not uniquely clear what “assume”
means in that context. Does it mean that the formulae in Σ are axioms (globally valid formulae)
or does it just mean that the formulae in Σ are some specific, local conditions for ψ?
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We will adopt the local view: whenever we write Σ `K ψ , we will understand it as follows:
Σ `K ψ if and only if there are formulae ϕ1, . . . ,ϕn ∈ Σ such that `K ϕ1 ∧ ·· · ∧ϕn→ψ . Of
course, such a relation is just syntactic sugar and the so-called deduction theorem

ϕ1, . . . ,ϕn `K ψ =⇒ ϕ1, . . . ,ϕn−1 `K ϕn→ψ

becomes a propositional triviality.

Remark 3.10. A non-trivial meaning of Σ `K ψ could be defined if one allows the formulae
in Σ to be used as axioms in proofs. Again such a concept is syntactic sugar, but the deduction
theorem would not hold in general: assuming the deduction theorem, we could for example
conclude that `K p→�p, which is of course not justified by the Kripke semantics.

Remark 3.11. Another way to go is to introduce the deduction relation in a way as natural
deduction systems do. We introduce Σ ` ϕ (“assuming Σ, ϕ is provable”) by a set of rules. In
our setting the propositional part of the rules could take the following form:

(Ass)
ϕ ∈ Σ

Σ ` ϕ
(Add)

Σ ` ϕ, Σ⊆ Σ′

Σ′ ` ϕ
(MPP)

Σ ` ϕ→ψ, Σ ` ϕ

Σ ` ψ

(CP)
Σ∪{ϕ} ` ψ

Σ ` ϕ→ψ
(USS)

Σ ` ϕ, σ a substitution

Σσ ` ϕσ
(MTT)

Σ ` ϕ→ψ, Σ ` ¬ψ

Σ ` ¬ϕ

(DN)
Σ ` ¬¬ϕ

Σ ` ϕ
(RAA)

Σ∪{ϕ} ` ⊥
Σ ` ¬ϕ

In the modal-logical setting we add to these rules (assumption, addition of assumptions, modus
ponendo ponens, conditional proof, uniform and simultaneous substitution, modus tollendo
tollens, double negation, reductio ad absurdum) the following rules:

(S�)
Σ ` ϕ

�(Σ) `�ϕ

Here�(Σ) is defined as {�ϕ : ϕ ∈ Σ}. Then, for example, axiom K can be derived as follows:

(Ass)
p ∈ {p, p→q}

{p, p→q} ` p
(Ass)

p→q ∈ {p, p→q}

{p, p→q} ` p→q
(MPP)

{p, p→q} ` q
(S�)

{�p,�(p→q)} `�q
(CP)

{�(p→q)} `�p→�q
(CP)

/0 `�(p→q)→ (�p→�q)

Also an analog of the necessitation rule R-� can be easily proven: From /0 ` ϕ we obtain
�( /0) `�ϕ . Since �( /0) is empty, we obtain /0 `�ϕ . The “disadvantage” of natural deduction
systems is that, in general, additional axioms often cannot be easily expressed as rules that fit
nicely into the rule scheme used for the propositional logic connectives.
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3.4 Soundness and completeness

In the last section we introduced Hilbert-style “axiomatizations” and a concept of proof that
allows us to enumerate all formulae that are provable in the axiomatization. In section 3.1 we
stated that the set of formulae valid in all Kripke frames can be axiomatized using axiom K and
rule R-�. This means that the formulae that are valid in all Kripke frames are exactly those
that have a K-proof. In this section we will show this claim.
For the purposes of this section it is convenient to say that a modal logic Λ is normal (cp.
Definition 3.1) if it contains axioms K and Dual, and is closed under the necessitation rule. It
is clear that for any set of Lτ(P)-formulae, Γ, the set of K-theorems is such a modal logic.

Definition 3.4 (Soundness). A modal logic Λ ⊆ Lτ(P) is called sound with respect to a class
of τ-frames, C , if Λ⊆ Λ(C ).

Hence a modal logic is sound with respect to C if each formula in Λ is valid in each frame
in C . To check that a modal logic axiomatized by a set of formulae Γ is sound it suffices to
show that all axioms in Γ are valid in C and that validity in C is preserved by the rules used in
the axiomoatization (modus ponens, uniform substitution, and necessitation). In what follows,
when we want to emphasize that a formula is provable in an axiomatized modal logic, we also
write `Λ ϕ instead of ϕ ∈ Λ.
An immediate simple consequence of this definition is the following:

Lemma 3.8. K is sound for the class of all Kripke frames.

Proof. In fact, each propositional tautology is valid in each Kripke frame. Moreover, axiom K
is valid in each Kripke frame (see Lemma 2.4).
Furthermore, all rules preserve validity. For MP, if both ϕ and ϕ→ψ are valid in each Kripke
frame, then so is ψ .
US: If ϕ is valid in each Kripke frame, then for each substitution σ , ϕσ is valid in each Kripke
frame. For proof by contraposition, assume that ϕσ is not valid in each frame, then there is a
model M based on some frame F and a state s such that M 6|=s ϕσ . Then, by Lemma 2.3,
M σ 6|=s ϕ . M σ is defined on the same frame as M . Hence ϕ is not valid in F , and thus not
valid in all frames. By contraposition, the claim follows.
R-�: If ϕ is valid in each Kripke frame, then �ϕ is valid in each Kripke frame. For if �ϕ is
not valid in some frame F , then M 6|=s �ϕ for some state s in some model M defined on F .
But then there exists a state s′ (accessible from s) such that M 6|=s′ ϕ . Hence ϕ is not valid in
F and hence not valid in all frames. Again, by contraposition, the claim follows. C

Remark 3.12. It is worth mentioning that the proof of the lemma shows that the rules of K
preserve validity with respect to single frames. Thus, these rules also preserve validity for any
class of frames.

Definition 3.5 (Weak completeness). A modal logic Λ⊆Lτ(P) is said to be (weakly) complete
with respect to a class of τ-frames, C , if and only if Λ(C )⊆ Λ.

Hence a modal logic is weakly complete for C if all the formulae that are valid in each frame
in C are actually contained in Λ. In order to check that a modal logic axiomatized by a set of
formulae Γ is weakly complete we need to show that each formula that is valid in all frames in
C can be proved in the modal logic.

There is an even stronger concept of completeness. To explain that we will need some further
concepts.
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Definition 3.6. A set of Lτ(P)-formulae, Σ, is called Λ-inconsistent if there exist ϕ1, . . . ,ϕn ∈Σ

with ϕ1∧·· ·∧ϕ→⊥∈ Λ. Otherwise, Σ is said to be Λ-consistent.

That is, Σ is Λ-consistent if there exist no formulae ϕ1, . . . ,ϕn ∈ Σ such that

`Λ ϕ ∧·· ·∧ϕn→⊥.

Using the notation introduced in Remark 3.9, Σ is inconsistent if Σ `Λ ⊥.

Weak completeness states that each valid formula is provable. Hence when a singleton set of
formulae {ϕ} is consistent, the formula ¬ϕ is not provable, hence not valid, and thus ϕ is satis-
fiable. Strong completeness generalizes this connection between consistency and satisfiability
to sets of formulae.

Definition 3.7 (Strong completeness). A modal logic Λ is strongly complete with respect to a
class of τ-frames, C , if each Λ-consistent set of Lτ(P)-formulae is satisfiable in C .

Another characterization of strong completeness is in terms of deducibility (see Remark 3.9
and Remark 3.11).

Definition 3.8. Let C be a class of frames. We say that a formula ϕ is a C -consequence of Σ,
Σ |=C ϕ , if for each state s in each model M defined on any F in C ,

M |=s Σ =⇒ M |=s ϕ.

Clearly, Σ |=C ϕ if and only if Σ∪{¬ϕ} is not satisfiable in C . On the other hand, Σ `Λ ϕ if
and only if Σ∪{¬ϕ} is Λ-inconsistent.

Lemma 3.9. A modal logic Λ⊆Lτ(P) is strongly complete with respect to a class of τ-frames,
C , if and only if

Σ |=C ϕ =⇒ Σ `Λ ϕ. C

In the rest of this section we show the completeness of some normal modal logics. The most
fundamental notion is that of a maximal consistent set of formulae.

Definition 3.9 (Maximal consistent sets). A set of Lτ(P)-formulae, Σ, is called maximal Λ-
consistent if it is Λ-consistent and there is no Λ-consistent set of Lτ(P)-formulae Σ′ with Σ(Σ′.

Thus, a consistent set of formulae is maximal consistent if each proper extension of it is in-
consistent. The most important properties of maximal consistent sets are summarized in the
following proposition.

Proposition 3.10. Let Σ be a maximal Λ-consistent set of formulae. Then the following claims
hold:

(a) Λ is contained in Σ.

(b) Σ is closed under modus ponens, i.e., if ϕ ∈ Σ and ϕ→ψ ∈ Σ, then ψ ∈ Σ.

(c) Σ is (theory-) complete, i.e., for each Lτ(P)-formula, either ϕ ∈ Σ or ¬ϕ ∈ Σ.

(d) For each Lτ(P)-formula ϕ , ¬ϕ ∈ Σ if and only if ϕ 6∈ Σ.

(e) For all Lτ(P)-formulae ϕ and ψ , ϕ ∨ψ ∈ Σ if and only if ϕ ∈ Σ or ψ ∈ Σ.
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Proof. (a) For proof by contradiction, assume that Λ is not contained in Σ. Then there is a
formula ψ ∈ Λ such that ψ /∈ Σ. Hence Σ∪{ψ} is a proper superset of Σ. As Σ is maximal
Λ-consistent, Σ∪ {ψ} must be Λ-inconsistent. That is, there exist formulae ϕ1, . . . ,ϕn ∈ Σ

such that ϕ1 ∧ ·· · ∧ϕn ∧ψ→⊥ ∈ Λ. But then by using propositional logic transformations,
ψ→ (ϕ1 ∧ ·· · ∧ϕn→⊥) ∈ Λ. Since Λ is closed under MP, it follows from ψ ∈ Λ that ϕ1 ∧
·· ·∧ϕn→⊥∈ Λ. Thus Σ is Λ-inconsistent — in contradiction to the choice of Σ.
(b) Assume that ϕ and ϕ→ψ are in Σ, but ψ is not. As Σ is maximal Λ-consistent, Σ∪{ψ}
must be Λ-inconsistent. Then there exist χ1, . . . ,χn ∈ Σ such that χ1 ∧ ·· · ∧ χn ∧ψ→⊥ ∈ Λ.
Since ϕ ∧ (ϕ→ψ)→ψ ∈Λ, we obtain that χ1∧·· ·∧χn∧ϕ ∧ (ϕ→ψ)→⊥∈Λ. Since all the
χi as well as ϕ and ϕ→ψ are in Σ, it follows that Σ is Λ-inconsistent — a contradiction.
The claims (c), (d), and (e) are left as an exercise. C

Lemma 3.11 (Lindenbaum lemma). Let Λ be a modal logic. Then each Λ-consistent set of
Lτ(P)-formulae, Σ, is contained in a maximal Λ-consistent set of Lτ(P)-formulae.

Proof. For the proof we assume that Lτ(P) contains only a countable number of propositional
variables (in the multi-modal case we would also assume that the language contains a countable
number of modal connectives only). Since the set of Lτ(P)-formulae is countable, there exists
an enumeration of all formulae in Lτ(P), say ϕ1,ϕ2, . . . We use this enumeration to define an
ascending sequence of Λ-consistent sets of formulae, Σ =: Σ0 ⊆ Σ1 ⊆ ·· · , as follows: given
that Σn−1 has already been defined, we set:

Σn :=

{
Σn−1∪{ϕn} if Σn−1∪{ϕn} is Λ-consistent
Σn−1 otherwise

Clearly, each Σn is Λ-consistent. It remains to be shown that

Σ
′ :=

⋃
n

Σn

is maximal Λ-consistent (obviously, Σ is contained in Σ′).
To prove that Σ′ is Λ-consistent, assume the contrary. Then there exist formulae ψ1, . . . ,ψn in
Σ′ such ψ1∧ ·· · ∧ψn→⊥ ∈ Λ. Each ψ j occurs as a formula ϕi j in the enumeration (we may
assume that i1 < · · ·< in). Thus it follows ϕi1 ∧ ·· ·∧ϕin→⊥∈ Λ. Since the chain of formula
sets is ascending, all ϕi j are in Σin . But this shows that Σin is Λ-inconsistent — in contradiction
to the observation that each Σ j is Λ-consistent.
Finally, Σ′ is maximal Λ-consistent. Assume that ϕn is any formula in the enumeration such
that Σ′ ∪{ϕn} is Λ-consistent. Then, of course, the subset Σn−1 ∪{ϕn} must be Λ-consistent
as well. By definition of Σn, ϕn is contained in Σn, and hence also contained in Σ′. This shows
that there is no proper extension of Σ′ that is Λ-consistent. C

So far we just reported on facts that hold for any modal logic. Next we show that whenever a
maximal consistent set contains a formula ♦ϕ , there exists a “witness”, a maximal consistent
set of formulae that contains ϕ . This follows from the Lindenbaum Lemma and the following
lemma.

Lemma 3.12. Let Λ be a normal modal logic and Σ be a Λ-consistent set of Lτ(P)-formulae
with ♦ψ ∈ Σ. Then the set of Lτ(P)-formulae

{ϕ : �ϕ ∈ Σ}∪{ψ}

is Λ-consistent.
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Proof. Assume that {ϕ : �ϕ ∈ Σ}∪{ψ} is Λ-inconsistent. Then there exist�ϕ1, . . . ,�ϕn ∈ Σ

such that ϕ1 ∧ ·· · ∧ϕn ∧ψ→⊥ ∈ Λ. By PL-transformations, we obtain that ϕ1 ∧ ·· · ∧ϕn→
¬ψ ∈ Λ. Since Λ is a normal modal logic, it follows: �(ϕ1 ∧ ·· · ∧ ϕn)→�¬ψ ∈ Λ (see
Lemma 3.7). By applying Lemma 3.7, we obtain that �ϕ1 ∧ ·· · ∧�ϕn→�¬ψ ∈ Λ. By
DUAL, it follows �ϕ1 ∧ ·· · ∧�ϕn→¬♦ψ ∈ Λ and hence �ϕ1 ∧ ·· · ∧�ϕn ∧♦ψ→⊥ ∈ Λ.
This shows that Σ is Λ-inconsistent. C

Lemma 3.13. Let Λ be a normal modal logic and let Σ and Σ′ be maximal Λ-consistent sets of
formulae. Then the following statements are equivalent

(a) For each formula ϕ , if �ϕ ∈ Σ, then ϕ ∈ Σ′.

(b) For each formula ϕ , if ϕ ∈ Σ′, then ♦ϕ ∈ Σ.

Proof. (a) ⇒ (b): Assume ϕ ∈ Σ′. Then ¬ϕ /∈ Σ′ (since Σ is Λ-consistent) and hence by (a)
�¬ϕ /∈ Σ. As Σ is maximal Λ-consistent, it follows that ¬�¬ϕ ∈ Σ (by Proposition 3.10).
Axiom Dual ensures that ♦ϕ ∈ Σ.
(b)⇒ (a): follows analogously. C

Proposition 3.14. Let Λ be a normal modal logic and let SΛ be the set of all maximal Λ-
consistent sets of Lτ -formulae. Then

Σ RΛ
♦ Σ
′ :⇐⇒ {ϕ : �ϕ ∈ Σ} ⊆ Σ

′

defines a binary relation on SΛ (for each unary modality ♦ of τ) and hence

F Λ =
〈
SΛ,{RΛ

♦}♦∈τ

〉
is a Kripke frame, the canonical frame of Λ. Moreover, the following implications hold:

(a) If T is in Λ, then RΛ
♦ is reflexive.

(b) If 4 is in Λ, then RΛ
♦ is transitive.

(c) If B is in Λ, then RΛ
♦ is symmetric.

(d) If D is in Λ, then RΛ
♦ is serial.

(e) If E is in Λ, then RΛ
♦ is Euclidean.

Proof. (a) We need to prove that for each MCS (= maximal Λ-consistent set of formulae)
Σ, Σ RΛ

♦ Σ. By Lemma 3.13, we have to show that ♦ϕ ∈ Σ whenever ϕ ∈ Σ. Since T is in
Λ, Σ contains all formulae of the form ϕ→♦ϕ (by US and Proposition 3.10 (a)). Thus, by
Proposition 3.10 (b), ♦ϕ ∈ Σ whenever ϕ ∈ Σ.

(c) Let Σ and Σ′ be MCS with ΣRΛ
♦Σ′. We have to show that Σ′RΛ

♦Σ. So assume�ϕ ∈ Σ′. Then
by Σ RΛ

♦ Σ′ and Lemma 3.13, ♦�ϕ ∈ Σ. Since B is in Λ, Σ contains all formulae of the form
♦�ψ→ψ (by US and Proposition 3.10 (a)). Thus, by Proposition 3.10 (b), ϕ ∈ Σ — as to be
shown.

The proofs of (b), (d), and (e) are left as an exercise. C

Theorem 3.15. Let Λ be a normal modal logic and let SΛ be the set of all maximal Λ-consistent
sets of Lτ(P)-formulae. Define V Λ : P→ 2SΛ

by V Λ(p) := {Σ ∈ SΛ : p ∈ Σ}. Then,

M Λ =
〈
F Λ,V Λ

〉
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defines a Kripke model on the canonical frame of Λ, the canonical model of Λ. Moreover, for
each Lτ(P)-formula ϕ ,

M Λ |=Σ ϕ ⇐⇒ ϕ ∈ Σ.

Proof. We only need to show the last equivalence and proceed by induction on the formula
length.

For propositional variables p the claim holds trivially, because:

M Λ |=Σ p ⇐⇒ Σ ∈V Λ(p) ⇐⇒ p ∈ Σ.

If ϕ has the form ¬ψ , the claim can be concluded from Proposition 3.10 and the induction
hypothesis as follows:

M Λ |=Σ ¬ψ ⇐⇒ M Λ 6|=Σ ψ ⇐⇒ ψ /∈ Σ ⇐⇒ ¬ψ ∈ Σ.

If ϕ has the form ψ1∨ψ2, the claim follows analogously:

M Λ |=Σ ψ1∨ψ2 ⇐⇒ M Λ |=Σ ψ1 or M Λ |=Σ ψ2

⇐⇒ ψ1 ∈ Σ or ψ2 ∈ Σ

⇐⇒ ψ1∨ψ2 ∈ Σ.

If ϕ has the form ♦ψ , the claim follows from the following equivalences:

M Λ |=Σ ♦ψ ⇐⇒ there is a Σ
′ ∈ SΛ with Σ RΛ

♦ Σ
′ and M Λ |=Σ′ ψ

⇐⇒ there is a MCS Σ
′ with {ϕ : �ϕ ∈ Σ} ⊆ Σ

′ and ψ ∈ Σ
′

⇐⇒ ♦ψ ∈ Σ.

The last equivalence can be proven as follows: “⇒” has been shown in Lemma 3.13. “⇐”
follows from the “witness”-lemma (Lemma 3.12) and the Lindenbaum lemma (Lemma 3.11).

C

An immediate consequence of the theorem is that K is a complete axiomatization of the set of
formulae valid in arbitrary Kripke frames.

Corollary 3.16. K is strongly complete for the class of all Kripke frames.

Proof. Let Λ be the set of K-theorems and let Σ be a Λ-consistent set of formulae. By the
Lindenbaum Lemma 3.11, this set is contained in a “state” Σ′ of the canonical model M Λ of
Λ. By Theorem 3.15, M Λ |=Σ′ ϕ for each formula ϕ in Σ′, and hence for each ϕ ∈ Σ. Thus, Σ

is satisfiable. C

From now on we may always assume that a normal modal logic contains all formulae valid in
all Kripke frames: K and even Kn is sound and complete for the class of all Kripke frames.
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3.5 Canonical frames, definability, and compactness

Before we start to investigate selected modal logics in more detail, we want to draw some
conclusions from the results of the last section. In particular, the canonical frame of a normal
modal logic will be of special interest: as we have already seen, this frame satisfies some of
the properties on Kripke frames defined in section 3.2 (see Proposition 3.14). The key notion
in this section is that of a frame for a modal logic.

Definition 3.10. Let Λ⊆ Lτ be a normal modal logic. A τ-frame F is called a frame for Λ if
F |= Λ. Λ is called canonical if the canonical frame of Λ is a frame for Λ, i.e., F Λ |= Λ.

Notice that F is a frame for Λ if and only if Λ ⊆ Λ(F ). Moreover, the canonical frame of a
normal modal logic Λ has its own (normal) modal logic Λ(F Λ). The following lemma explains
the connection between these modal logics.

Lemma 3.17. Let Λ be a normal modal logic. Then the following statements hold:

(a) Λ(F Λ)⊆ Λ.

(b) Λ is canonical if and only if Λ⊆ Λ(F Λ).

Proof. (a) If ϕ /∈ Λ, then the set {¬ϕ} is Λ-consistent. By the Lindenbaum Lemma 3.11, this
set is contained in a maximal Λ-consistent set Σ′. It follows (by Theorem 3.15) M Λ 6|=Σ′ ϕ ,
hence M Λ 6|= ϕ , thus F Λ 6|= ϕ . This shows that ϕ /∈ Λ(F Λ).
(b) Obviously, F Λ |= Λ if and only if F Λ |= ϕ for each ϕ ∈ Λ if and only if ϕ ∈ Λ(F Λ) for
each ϕ ∈ Λ if and only if Λ is a subset of Λ(F Λ). C

This shows that a normal modal logic is canonical if and only if it is the logic of its canonical
frame.

A normal modal logic is Λ is canonical if F Λ |= Λ. Notice that in general only the weaker
claim

M Λ |= Λ. (∗)

holds. In fact, Λ is contained in each maximal Λ-consistent set Σ ∈ SΛ. Thus, by Theo-
rem 3.15, M Λ |=Σ Λ, for each Σ ∈ SΛ. But from (∗) it does not follow that each normal
modal logic is canonical. Nevertheless, as proven in Proposition 3.14, many modal logics are
well-behaved: K, S4, S5, etc. are canonical. For example, for S4 the canonical frame F S4 is
reflexive and transitive. Hence by Proposition 3.1 and Proposition 3.2, it holds F S4 |= p→♦p
and F S4 |= ♦♦p→♦p. Consequently, F S4 |= S4, which shows that S4 is canonical. The
following proposition explains the situation more generally:

Proposition 3.18. Let Γ be a set of Lτ -formulae that defines a class C of τ-frames. Then the
frames for Λ(Γ) are exactly the frames in C . In particular, Λ(Γ) is canonical if and only if the
canonical frame F Λ(Γ) is in C .

Proof. Because Γ defines C , the frames in C are exactly the frames F with F |= Γ. Hence,
for the first claim, we just need to show that the frames for Λ(Γ) are exactly the frames F with
F |= Γ.
Trivially, if F |= Λ(Γ), then F |= Γ, since the normal modal logic Λ(Γ) contains Γ as a subset.
Conversely, if F |= Γ, then Γ is a subset of Λ(F ). Since Λ(Γ) is the smallest normal modal
logic with subset Γ, it follows that Λ(Γ) ⊆ Λ(F ), that is, each formula in Λ(Γ) is valid in F ,
i.e., F is a frame for Λ(Γ).
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For the second claim: by definition, Λ(Γ) is canonical if and only if the canonical frame F Λ(Γ)

is a frame for Λ(Γ). As just shown, this is the case if and only if F Λ(Γ) is in C . C

Proposition 3.19. A normal modal logic Λ is sound for any class of frames for Λ. If Λ is
canonical, then it is strongly complete for the class of (all) its frames.

Proof. Clearly, Λ is sound with respect to any class of frames for Λ.

For the completeness claim, let Σ be Λ-consistent. By the Lindenbaum Lemma 3.11, we may
assume that Σ is maximal Λ-consistent. Then it holds M Λ |=Σ Σ. Thus, Σ is satisfiable in a
model based on the canonical frame F Λ. Since Λ is canonical, F Λ is a frame for Λ and hence
Σ is satisfiable in a frame for Λ. C

Corollary 3.20. Let C be a class of τ-frames defined by a set of Lτ -formulae Γ. If Λ(Γ) is
canonical, then Λ(Γ) is sound and strongly complete for C .

Proof. By Proposition 3.19, Λ(Γ) is sound and strongly complete for the class of its frames.
Since Γ defines C , the frames for Λ(Γ) are exactly the frames in C (see Proposition 3.18). This
shows that Λ(Γ) is sound and strongly complete for the frames in C . C

Remark 3.13. In the literature there are different notions of a normal logic being characterized
by a class of frames. In (Blackburn et al., 2002) the term is mostly used synonymously to
definability: a normal modal logic is characterized by a class of frames if the logic defines
that class of frames. In (Hughes and Cresswell, 1996) a normal modal logic is said to be
characterized by a class of frames if the logic is sound and complete for that class of frames.
Often both properties come hand in hand, but one should keep in mind that even if a normal
modal logic Λ is sound and complete for a class of frames, C , nothing follows about whether Λ

defines C . To mention just a simple example: K is sound and complete with respect to the class
of all irreflexive frames, but K does not define that class of frames. However, Corollary 3.20
shows that for a large class of modal logics the other direction holds.

In the rest of this section we will investigate the connection between compactness and strong
completeness.

Definition 3.11. A normal modal logic Λ is called compact if each Λ-consistent set of Lτ -
formulae is satisfiable in a frame for Λ.

Thus, a normal modal logic is compact if and only if it is strongly complete for the class of its
frames. Next we present a “finite subset” characterization of compactness (cp. section 2.6).

Proposition 3.21. Let Λ be a normal modal logic that is weakly complete for the class of its
frames. Equivalent are:

(a) Λ is compact.

(b) For each set Σ of Lτ -formulae, Σ is satisfiable in a frame for Λ whenever each of its finite
subsets is satisfiable in a frame for Λ.

Proof. (a) ⇒ (b): Assume that Σ is not satisfiable in a frame for Λ. Since Λ is compact,
it follows that Σ is Λ-inconsistent. Hence there exists a finite subset of Σ, say Σ′, such that∧

Σ′→⊥∈ Λ. Hence, ¬
∧

Σ′ ∈ Λ. Hence, F |= ¬∧Σ′ for each frame F for Λ. Thus
∧

Σ′ and
hence Σ′ are not satisfiable in any frame for Λ. By contraposition, this shows (b).
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(b)⇒ (a): Again we assume that Σ is not satisfiable in a frame for Λ. We have to show that Σ

is Λ-inconsistent. By condition (b), there exists a finite subset Σ′ of Σ that is not satisfiable in
any frame for Λ. Thus,

∧
Σ′ is not satisfiable in any frame for Λ. Consequently, we obtain that

F |= ¬∧Σ′ for each frame F for Λ, and hence ¬
∧

Σ′ ∈ Λ(CΛ) (where CΛ denotes the class of
all frames for Λ). Since Λ is complete for CΛ, that is, Λ(CΛ) ⊆ Λ, it follows that ¬

∧
Σ′ ∈ Λ.

Thus,
∧

Σ′→⊥∈ Λ, which shows that Σ is Λ-inconsistent. C
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3.6 The modal logic S4

A popular modal logic is the modal logic S4. In section 3.1 we defined S4 as the modal logic
KT4. That is, S4 is the normal modal logic (with a single modal connective) axiomatized by:

T �p→ p (alternatively: p→♦p)

4 �p→��p (alternatively: ♦♦p→♦p)

Moreover we have already shown:

Corollary 3.22. S4 is characterized by the class of reflexive and transitive Kripke frames, i.e.,
the frames for S4 are exactly the reflexive and transitive Kripke frames. In particular, S4 is
canonical.

Proof. See Propositions 3.1, 3.2, and 3.18. C

Corollary 3.23. S4 is sound and strongly complete for the class of reflexive and transitive
Kripke frames.

Proof. The claim follows immediately from the previous corollary and Proposition 3.19.
A more direct proof proceeds as follows: Soundness follows from Propositions 3.1 and 3.2:
axioms K, T, and 4 are valid in all reflexive and transitive Kripke frames. As we noted in the
remark after Lemma 3.8, all rules of S4 preserve validity with respect to reflexive and transitive
frames.s
Weak completeness follows from the fact that the canonical frame of S4 is reflexive and transi-
tive: assume ϕ is not contained in S4, i.e., it is not provable in S4. Then {¬ϕ} is S4-consistent,
hence contained in a maximal S4-consistent set of formulae Σ. In the canonical model of S4,
then, M S4 6|=Σ ϕ . Since this model is based on a reflexive and transitive frame (see Proposi-
tion 3.14), it follows that ϕ is not valid for the class of that frames. For strong completeness
the proof is similar. C

Corollary 3.24. S4 is compact.

Proof. This follows from the fact that S4 is strongly complete for the class of its frames.
C

Remark 3.14. S4 also has an interesting characterization in terms of the filter semantics dis-
cussed in the exercises. Assume that instead of relational frames we consider “frames” con-
sisting of a set of states, S, and a function that assigns to each state s a set filter N(s) of subsets
of S (the elements of N(s) are called neighborhoods of s). Then axiom T corresponds to the
condition that each neighborhood of each state s contains state s as an element. And axiom 4
corresponds to the condition that each neighborhood of a state s contains an open neighbor-
hood: a neighborhood is said to be open if it is a neighborhood for all its elements, and closed
if its set-theoretical complement in S is open. Thus, the filter system becomes a “neighborhood
system”, a topological space in terms of point-set topology. The interior of a set of states X ,
X int , is the largest open set that is contained in X . The closure of a set of states X , Xcls, is the
smallest closed set in which X is contained. Define models on top of such frames in the usual
way and use the following clauses for defining the satisfaction relation:

M |=s �ϕ ⇐⇒ s ∈ {s′ ∈ S : M |=s′ ϕ}int

M |=s ♦ϕ ⇐⇒ s ∈ {s′ ∈ S : M |=s′ ϕ}cls
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Then T corresponds to the condition that X int ⊆ X for each set of states X (or equivalently, that
X ⊆ Xcls, for X ⊆ S). And 4 corresponds to the condition that X int ⊆ (X int)int (or equivalently,
(Xcls)cls ⊆ Xcls). To sum up, S4 is the normal modal logic of arbitrary topological spaces.

In the next chapter we will learn more on the complexity of checking whether an S4-formula
is satisfiable.

An important feature of S4 is that this logics allows for reducing modalities. In this context
a modality is any sequence of the logical symbols {¬,♦,�} (all of them considered primi-
tives). The empty sequence is denoted by −. Thus, for example, −, ¬, �, ♦, and ¬♦♦¬� are
modalities. An affirmative modality is a modality in which the negation symbol does not occur.
Modalities X and X ′ are called equivalent with respect to a normal modal logic Λ if Λ contains
the formula X p↔ X ′ p.

S4 has up to equivalence only 14 different modalities. To prove this, we first show the following
lemma:

Lemma 3.25. The following formulae are S4-theorems:

(a) ��p↔�p

(b) ♦♦p↔ ♦p

(c) �♦�♦p↔�♦p

(d) ♦�♦�p↔ ♦�p

Proof. Obviously, (a) and its mirror formulae (b) directly follow from axioms T and 4.
For (c) we may argue as follows (see Lemma 3.7): Since �♦p→♦p is in S4, so is ♦�♦p→
♦♦p. Hence, by (b), ♦�♦p→♦p is in S4 and consequently �♦�♦p→�♦p is in in S4. For
the other direction, by axiom T, �♦p→♦�♦p is in S4. Hence, ��♦p→�♦�♦p and then,
by axiom 4, �♦p→�♦�♦p are in S4. Thus, �♦p↔ �♦�♦p is in S4, since each modal
logic is closed with respect to conjunctions of formulae contained in it.
(d) follows immediately from (c). C

Proposition 3.26. In S4 each modality is equivalent to one of the modalities

−, �, ♦,�♦, ♦�, �♦�,♦�♦

or a negation of them.

Proof. The proof proceeds by induction of the length of modalities. Let us assume that X is a
modality for which the claim has already been proven, that is, in S4 X is equivalent to one of
the modalities in the set

B = {−,¬,�,¬�,♦,¬♦,�♦,¬�♦,♦�,¬♦�,�♦�,¬�♦�,♦�♦,¬♦�♦}.

We have to show that ¬X , �X , and ♦X are equivalent to one of these modalities as well. But
obviously for each modality X ∈B, each of ¬X , ♦X , and �X is equivalent to some modality
in B (see Lemma 3.25). That is, whenever X is equivalent to some modality in B, the same
holds true for ¬X , ♦X , and �X . C

The diagram of all affirmative S4 modalities is depicted in Figure 3.1. In the graph an arc
between modalities X and X ′ means that X p→ X ′ p is an S4-theorem (transitive links are
omitted). Notice that the set of 14 “basic” modalities cannot be further reduced in S4 (why?).
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Figure 3.1: Affirmative S4 modalities

3.7 The modal logic S5

Let us now turn to the modal logic S5, which was defined in section 3.1 as the modal logic
KTE. Thus, S5 is the normal modal logic (with a single modal connective) that is axiomatized
by the axioms:

T �p→ p (alternatively: p→♦p)

E ♦p→�♦p (alternatively: ♦�p→�p)

It is an easy exercise to verify that S5 is identical to the modal logic KT4B, that is, S5 is an
extension of S4.
Let us sum up basic statements about S5 that have been proven in sections section 2.1 and
section 3.2.

Corollary 3.27. S5 is characterized by the class of reflexive and Euclidean Kripke frames, i.e.,
the frames for S5 are exactly the reflexive and Euclidean Kripke frames. C

Since the reflexive and Euclidean frames are exactly those frames that are reflexive, symmetric,
and transitive (see Lemma 2.1), we obtain the following alternative characterization:

Corollary 3.28. S5 is characterized by the class of reflexive, symmetric, and transitive Kripke
frames, i.e., the frames for S5 are exactly that Kripke frames in which the accessibility relation
is an equivalence relation. C

Corollary 3.29. S5 is sound and strongly complete for the class of Kripke frames in which the
accessibility relation is an equivalence relation. Moreover, S5 is compact.

Proof. Analogous to the proofs of Corollaries 3.23 and 3.24. Here we use Propositions 3.1 and
3.3 (or alternatively, Propositions 3.1, 3.2, and 3.4). C

Notice that the accessibility relation in each universal frame (i.e., the accessibility relation is
universal) is an equivalence relation. Conversely, in a Kripke frame or Kripke model based
on an equivalence relation each equivalence class forms a subframe or submodel (see Defini-
tion 2.10) in which the accessibility relation is universal.

Corollary 3.30. S5 is sound and strongly complete for the class of universal Kripke frames.
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Proof. Soundness is clear, as each universal frame trivially is a reflexive, symmetric, and tran-
sitive frame. For strong completeness, we may argue as follows: Let Σ be a set of formulae that
is S5-consistent. By the Lindenbaum Lemma 3.11, we may assume that Σ is already maximal
Λ-consistent. By Proposition 3.14, the accessibility relation RS5

♦ of the canonical frame F Λ is
an equivalence relation on SΛ. Thus we consider the submodel M S5

Σ
of the canonical model

M S5 that is generated by Σ. The states in this submodel are exactly the states in the equivalence
class of Σ with respect to RS5

♦ and hence this model is universal. Clearly, M S5
Σ
|=Σ ϕ for each

ϕ ∈ Σ. This shows that Σ is satisfiable in a universal frame. C

Since S4 is contained in S5, all S4-theorems are S5-theorems. Moreover, in S5 we have a series
of axioms that allow for reducing modalities.

Lemma 3.31. The following formulae are S5-theorems:

(a) ♦�ϕ ↔�ϕ

(b) �♦ϕ ↔ ♦ϕ

(c) �(ϕ ∨�ψ)↔ (�ϕ ∨�ψ)

(d) ♦(ϕ ∧♦ψ)↔ (♦ϕ ∧♦ψ)

(e) �(ϕ ∨♦ψ)↔ (�ϕ ∨♦ψ)

(f) ♦(ϕ ∧�ψ)↔ (♦ϕ ∧�ψ) C

Proposition 3.32. In S5 each modality is equivalent to one of the modalities

−, �, ♦

or the negation of one of these.

Proof. It suffices to show that the set of S4 modalities collapses to the given set of modalities.
But this follows immediately from Lemma 3.31. C

It is clear that in S5 each finite sequence of � and ♦’s, O1 . . .On, is equivalent to On. And
the S4-diagram of modalities (as shown in Figure 3.1) reduces in S5 to the graph presented in
Figure 3.2)

�

−

♦

Figure 3.2: Affirmative S5 modalities

Remark 3.15. It is worth mentioning that the logic of universal frames is exactly the logic
with respect to the valuation semantics introduced in section 1.2. Consequently, the formulae
valid in S5 are exactly those formulae that are valid in each valuation model. Moreover, the
procedure presented at the end of that section can be used to decide S5-validity of formulae.
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3.8 The modal logic KL

Let us now turn to the modal logic KL, which is an interesting logic, since it will allow us to
have a more in-depth view on the concepts discussed in section 3.5. KL is the normal modal
logic (with a single modal connective) axiomatized by axiom:

L �(�p→ p)→�p

Interestingly, we have that KL is an extension of the normal modal logic K4.

Lemma 3.33. Axiom 4 is a theorem of KL.

Proof. 1. (�p∧��p)→�p PL
2. p→ ((�p∧��p)→�p) PL: 1
3. p→ ((�p∧��p)→ p) PL1
4. p→ ((�p∧��p)→ (p∧�p)) PL: 3, 2
5. p→ (�(p∧�p)→ (p∧�p)) Lemma 3.7 (e): 4
6. �p→�(�(p∧�p)→ (p∧�p)) Lemma 3.7 (a): 5
7. �(�p→ p)→�p L
8. �(�(p∧�p)→ (p∧�p))→�(p∧�p) US: 7
9. �p→�(p∧�p) PL: 6, 8

10. �p→��p PL: 9
C

Since 4 is provable in KL, we know that each frame for KL is a transitive frame. But each such
frame is also irreflexive (recall that there is no formula that defines irreflexivity of frames).

Lemma 3.34. Each frame for KL is irreflexive and transitive.

Proof. Let F be a frame for KL. We have to show that no state sees itself. For proof by
contradiction, assume that s0 R s0 for some state s0. Define a model M = 〈F ,V 〉 on F by
V (p) := {s ∈ S : s 6= s0}. Thus we obtain that M 6|=s0 �p and hence M |=s0 �p→ p. For
each s ∈ S different from s0, M |=s �p→ p holds trivially. This shows that for each s ∈ S
(in particular for each s with s0 R s), M |=s �p→ p. Thus, M |=s0 �(�p→ p). Since F is
a frame for L, we obtain M |=s0 �(�p→ p)→�p, and hence M |=s0 �p. From s0 R s0 it
follows M |=s0 p — in contradiction to our definition of V . This shows that F is irreflexive.

Secondly, let us suppose that F is not transitive. Then there exist s0, s1, and s2 such that
s0 Rs1, s1 Rs2, but not s0 Rs2. Define a model M on F by V (p) := {s ∈ S : s 6= s1 and s 6= s2}.
Consider an arbitrary s ∈ S with s0 R s. By assumption, s is distinct from s2. If s = s1, then
from M 6|=s2 p it follows that M 6|=s �p and thus M |=s �p→ p. If s 6= s1, then M |=s p
and hence M |=s �p→ p. Thus, we have shown that for each s with s0 R s, M |=s �p→ p.
This shows that M |=s0 �(�p→ p). By axiom L, we can conclude that M |=s0 �p, and hence
M |=s1 p — in contradiction to the definition of V . This shows that F is transitive. C

A further interesting property of KL is that its frames do not contain infinite R-chains: an R-
chain is a (finite or infinite) sequence s0,s1,s2, . . . of worlds such that for each i ≥ 0, si R si+1
(cp. Definition 2.1).

Lemma 3.35. In each frame F for KL, the converse of the accessibility relation is well-
founded.
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Proof. Let F = 〈S,R〉 be a Kripke frame such that S contains an infinite R-chain s0,s1,s2, . . . .
Define a model M on F by V (p) := {s∈ S : s 6= si for each i≥ 0}. By definition of the model
and s0 R s1, we obtain that M 6|=s0 �p. Let now s ∈ S with s0 R s. If s is one of the states si

in the chain, then si has an R-successor in which p is false. That means M 6|=si �p and hence
M |=s �p→ p. If s is none of the states si, then M |=s �p→ p holds trivially. This shows that
for each s0 R s, M |=s �p→ p, and thus M |=s0 �(�p→ p). In summary, in the given model
it holds that M |=s0 �(�p→ p), but M 6|=s0 �p. Hence, in F L is not valid, i.e., F is not a
frame for KL. C

Proposition 3.36. The frames for KL are the transitive and converse well-founded Kripke
frames.

Proof. We show that L defines the class of transitive and converse well-founded Kripke frames.
Notice that if a frame is converse well-founded, it is also irreflexive.
By Lemma 3.34 and Lemma 3.35, we already know that each frame F with F |=L is transitive
and the converse of the accessibility relation is well-founded.
For the other direction, let F = 〈S,R〉 be a transitive frame that does not contain an infinite R-
chain. Let M be a model defined on F and s0 ∈ S be a state. Assume that M |=s0 �(�p→ p),
but that M 6|=s0 �p. Hence there exists an s1 ∈ S such that s0 R s1 and M 6|=s1 p. Of course,
M |=s1 �p→ p, and hence M 6|=s1 �p. But then there exists an s2 ∈ S such that s1 R s2 and
M 6|=s2 p. As R is transitive, we obtain that s0 R s2 and hence that M |=s2 �p→ p. Again we
obtain M 6|=s2 �p, which entails that there is an s3 with s2 R s3, and so on. This shows that the
F contains an infinite R-chain — in contradiction to the assumption. C

Proposition 3.37. KL is sound for the class of finite strict partial orders. Thus, KL is also
sound for the class of finite transitive trees.

Proof. The first claim follows from the fact that each finite strict partial order is a transitive
frame in which the accessibility relation is converse well-founded (note that by irreflexivity
and transitivity a finite frame cannot contain an infinite <-chain).
The second claim will be proven later. C

In the next section we will present methods that will help to establish also weak completeness
results. That is, KL is sound and weakly complete for the class of finite strict partial orders (or
alternatively, for the class of finite transitve trees). In what follows, however, we will see that
KL is not strongly complete for any class of frames. In particular, KL is not compact.

Theorem 3.38. KL is not compact.

Proof. We show that there exists a KL-consistent set of Lτ -formulae, Φ, that is not satisfiable
in any frame for KL. For this, consider the set of formulae

Φ := {♦p1}∪{�(pi→♦pi+1) : i≥ 1}.

First, we show that Φ is not satisfiable in any frame for KL. For proof by contradiction, assume
that M is a model defined on such a frame and s0 is a state such that

M |=s0 Φ,

then M |=s0 ♦p1 and M |=s0 �(p1→♦p2). Hence there exists a state s1 with s0 R s1 such that
M |=s1 p1 and hence M |=s1 ♦p2. Then there exists a state s2 ∈ S such that s1 R s2 (hence by
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transitivity, s0 R s2) and M |=s2 ♦p3, etc. Thus we obtain an infinite chain that is contained in
S — in contradiction to Lemma 3.35.

We now have to show that Φ is KL-consistent. Assume that this is not the case. Then there
exists a finite subset Φ′ of Φ such that

∧
Φ′→⊥∈KL. Obviously, there exists an n≥ 1 such

that Φ′ is a subset of
Φn := {♦p1}∪{�(pi→♦pi+1) : i < n}

and hence it holds that
∧

Φn→⊥ ∈ KL. Since KL is sound for the class of all finite partially
ordered sets,

∧
Φn→⊥ is valid in each such frame, i.e.,

∧
Φn is not satisfiable in any finite

partially ordered set. However, the following model Mn gives a counterexample:

S := {0, . . . ,n+1}, R :=<, V (pi) := {i}.

since Mn |=0 ♦p1 and for each s ∈ S with s > 0 and Mn |=s pi, it follows s = i and hence
M |=s ♦pi+1. Thus, M |=0 �(pi→♦pi+1), and consequently, Mn |=0 Φn.

In summary we have shown that Φ is a KL-consistent set of formulae that is not satisfiable in
any frame for KL. Thus, KL is not compact. C

Remark 3.16. By a similar argument one can show that KL is not sound and strongly complete
for any class of frames. This also shows that KL is not canonical (see Proposition 3.19).
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4 Decidability and Complexity

As has been pointed out several times, an important reason for the popularity of modal logics is
the fact that many modal logics are decidable. In the light of section 2.5 and 2.7, many modal
logics deal with decidable fragments of first order logic. In this section, we shall present some
techniques for proving decidability results in modal logic.
To recall important concepts: A formula ϕ is said to be satisfiable in a model M if there exists
a state s in M such that M |=s ϕ . In a similar way, we say that ϕ is falsifiable (or: refutable)
in M if there exists a state s in M with M 6|=s ϕ . Thus ϕ is falsifiable in a model if and
only if ¬ϕ is satisfiable. ϕ is satisfiable (falsifiable) in a class of models, K , if it is satisfiable
(falsifiable) in some model in K . Finally, ϕ is valid in K if ϕ is not falsifiable in any model
M in K . Decidability results, then, provide answers to the following reasoning problems:

• SAT(K ): Given some formula ϕ and some class of models K , is ϕ satisfiable in K ?

• VAL(K ): Given some formula ϕ and some class of models K , is ϕ valid in K ?

Since a formula ϕ is valid in K if and only if ¬ϕ is not satisfiable in K , we can reduce (as is
done in propositional logic) these problems to the other one. For if we have an algorithm that
decides SAT(K ) for any formula ϕ , the same algorithm can be used for deciding VAL(K ) for
¬ϕ , and vice versa.
Of course, similar concepts can be defined for classes of frames instead of classes of models,
or for given modal logics. For example, in section 1.2 we did already present a procedure for
deciding validity in S5, i.e., we proved that VAL(S5) is decidable. But the method used in
the proof of that result was tailored to the very special situation in S5, namely, that in S5 each
formula is modally equivalent to a formula that has modal depth ≤ 1. In what is to follow we
will discuss decidability results in a more general setting, namely, classes of frames or models
that do not allow for reducing modalities as does S5.

4.1 Finite Model Property

Let us assume that we want to decide whether some formula ϕ is satisfiable in a given class of
Kripke frames. If the formula is unsatisfiable, we need to check all the various models that are
definable on some of the maybe very huge frames contained in that class. For some classes of
frames it is possible to restrict the class of models to “small”, finite models. But in case such
a model is defined on an infinite set of states, it is, in general, not decidable whether a given
formula is satisfiable in that model. Hence the following property will be essential for proving
decidability results.

Definition 4.1. Let Λ be a normal modal logic and K be a class of Kripke models. Λ, is said
to have the finite model property (FMP) with respect to K if (a) K |= Λ and (b) each formula
ϕ /∈ Λ is falsifiable in some finite model M in K .

Notice that condition (b) in this definition can be restated as follows: (b’) for each Λ-consistent
formula ϕ , there exists a finite model M in K in which ϕ is satisfiable.
There are stronger versions of the finite model property that will be used in the following:

Definition 4.2. Let f : N→ N be a function on the natural numbers. We say that a normal
modal logic Λ has the f (n)-bounded model property with respect to a class of models K if
(a) K |= Λ and (b) each formula ϕ /∈ Λ is falsifiable in a model M in K with at most f (‖ϕ‖)
many states.
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Λ is said to have the strong finite model property if there exists a computable function f : N→
N such that Λ has the f (n)-bounded model property.

Notice that one can define finite frame properties in an analogous way. We leave this to the
reader. Instead we point out a special version of the strong finite model property, namely the
polynomially bounded model property: here the function f is some polynomial p(X).

In a first step we want to show the following: Assume that K is a set of finite models that is
recursive (that is membership in K is decidable for each input finite model). Assume further
that the normal modal logic Λ has the strong finite model property with respect to K . We will
see that in this situation Λ is decidable.
We start with some initial observations.

Lemma 4.1. Let M = 〈S,R,V 〉 be a finite Kripke model. Then for each s ∈ S and each Lτ(P)-
formula ϕ , it is decidable in time O

(
‖ϕ‖ ·

∥∥M
∥∥) whether M |=s ϕ , where

∥∥M
∥∥ denotes

|S|+ |R|.

Proof. Let ϕ1, . . . ,ϕn be an enumeration of all subformulae of ϕ , in the order of degree, i.e.,
ϕ = ϕn. For each 1 ≤ i ≤ n, label each state s ∈ S by ‘ϕi’ or ‘¬ϕi’ depending on whether
M |=s ϕi or M |=s ¬ϕi. Finally return ‘True’ if s is labeled with “ϕ”. Otherwise, return
‘False’.
Obviously, this algorithm terminates after n = |Sub(ϕ)| rounds. In each round |S| states are
considered. If in the i-th round ϕi has the form ¬ψ or (ψ ∨ψ ′), each state has already been
labeled in an earlier round by ‘ψ’ or by ‘¬ψ’ (and by ‘ψ ′’ or by ‘¬ψ ′’). So it can immediately
be seen, whether M |=s ϕi holds or not. If in the i-th round ϕi has the form ♦ψ , the algorithm
has to check whether there exists a pair of states (s′,s′′) such that s′ can see s′′ via R and s′′ is
labeled by ‘ψ’, or not. Thus, each round needs at most O (max(|S| , |R|)) = O

(∥∥M
∥∥), and the

algorithm terminates in time O
(
‖ϕ‖ ·

∥∥M
∥∥). C

Furthermore, notice that for each number of states n and each finite subset P′ of propositional
variables, one can compute (up to isomorphism) all Kripke models:

1. Each finite frame F = 〈S,R〉 is isomorphic to a Kripke frame on the set {1, . . . ,n} where
n = |S|.

2. For each set {1, . . . ,n}, there exist 2n2
distinct Kripke frames defined on it.

3. For each finite frame F = 〈S,R〉, there exist at most 2|S|
m

distinct Kripke models, where
m = |P′|.

Notice further that, by Lemma 4.1, for each finite model M and each formula ϕ , it is decidable
whether M |= ϕ .

Theorem 4.2. Let K be a set of finite models that is closed under isomorphic images and is
recursive (i.e., membership in K is decidable). Let Λ be a normal modal logic that has the
strong finite model property with respect to K . Then Λ is decidable.

Proof. Given formula ϕ , compute all models on the states 1,2, . . . , f (‖ϕ‖). Whenever a new
model is computed, check first whether the model is in K . If so, check whether ϕ is valid in
the model. If not, return ‘ϕ is not valid’. Finally (if the algorithm did not terminate earlier), we
return ‘ϕ is valid’.
In fact, this algorithm decides membership in Λ. For if the input formula ϕ is in Λ, the algo-
rithm will finally return that ϕ is valid. And if ϕ is not in Λ, then ¬ϕ is Λ-consistent. By the
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strong finite model property assumption, there exists a finite model M in K which has at most
f (‖ϕ‖) many states and in which ϕ is falsifiable. This model M is isomorphic to some model
M ′ defined on the states 1,2, . . . ,

∣∣M ∣∣. Hence M ′ 6|= ϕ . Thus, the algorithm will return ‘ϕ is
not valid’. C

The finite model property does not guarantee decidability. But we will now prove that if a
normal modal logic has the finite model property and furthermore it is finitely axiomatizable,
then its validity problem is decidable.

Definition 4.3. A normal modal logic Λ is said to be finitely axiomatizable if there exists a
finite set of Lτ(P)-formulae, Σ, such that Λ = Λ(Σ).

For example, the popular modal logics K, KD, . . . , S4, and S5 are finitely axiomatizable.

Theorem 4.3. Let Λ be a normal modal logic that has the finite model property (for some class
of models). If Λ is finitely axiomatizable, Then Λ is decidable.

Proof. We show that both (a) Λ and (b) Lτ \Λ are recursively enumerable. From this it follows
that ‘ϕ ∈ Λ’ and ‘ϕ /∈ Λ’ are semi-decidable, and hence that ‘ϕ ∈ Λ’ is decidable.

(a) By assumption, Λ = Λ(Σ) for some finite set of Lτ -formulae, Σ. But Λ(Σ) is recursively
enumerable, for Λ(Σ) consists of exactly those formulae that are provable from Σ. A proof
from Σ is a finite sequence of formulae ϕ1, . . . ,ϕn where each ϕi is (K) or a formula from Σ or
the result of applying one of the rules (R-MP), (R-US), or (R-�) on preceding formulae of that
sequence. Obviously, the set of all proofs from Σ is recursively enumerable.

(b) We have to define a recursive enumeration of all formulae ϕ with ϕ /∈ Λ. Since Λ has the
finite model property for some class of models, it also has the finite frame property for some
class of finite frames C . Note that

1. C may contain infinitely many, non-isomorphic frames (for that reason, the procedure
presented now, is not a decision procedure).

2. By Lemma 4.1, for each finite model M and each formula ϕ , it is decidable whether
M |= ϕ for a given formula ϕ .

Let now p1, p2, . . . be an enumeration of all propositional variables of P. Let L0 := /0 and let
Φ0 := /0. Let Pϕ denote the set of all propositional variables that occur in ϕ . Assume now that
n > 0 and that Lk and Φk are defined for all k < n. Construct all models on the set {1, . . . ,n}.
Check for each such model M whether M |= Σ (note that Σ is finite). If so, then add M to
the set Ln and check for each Lτ -formula ϕ with degϕ ≤ n and Pϕ ⊆ {p1, . . . , pn} whether
M 6|= ϕ . If so, add ϕ to the set Φn. If M |= ϕ , check whether M ′ 6|= ϕ for some model M ′ in
Lk (k < n). If this is the case, then add ϕ to the set Φn as well.

Thus, we obtain a recursively defined set Φ of all formulae of Lτ that are not valid in C . For if
ϕ is not valid, there exists a finite Kripke model M defined on some frame in C with M 6|= ϕ .
This model is isomorphic to some model M ′ defined on the set {1, . . . ,n}. Hence M ′ |= Σ. If
Pϕ ⊆ {p1, . . . , pm}, ϕ appears in Φ after at most max(m,n) steps. C

Remark 4.1. In order to prove the finite model property for K, we could argue as follows: Let
us assume that ϕ is satisfiable in the class of all Kripke frames. Since K is sound with respect
to that class of frames, ϕ must be K-consistent. Now the canonical way of proving that ϕ is
satisfiable (which we already know, of course) is to look at the canonical model of K. However,
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this model is defined on an infinite frame. But we can also define a finite ‘canonical model’
that behaves similar (in many respects) to the real canonical model. Thereto, consider the set
of all subformulae of ϕ , Sub(ϕ). Define a model Mϕ :=

〈
Sϕ ,Rϕ ,Vϕ

〉
as follows: Let Sϕ be

the set of all subsets Γ of Sub(ϕ)∪{¬ψ : ψ ∈ Sub(ϕ)} that are ϕ-maximal consistent in the
following sense: (a) Γ is consistent with respect to K, and (b) for each subformula ψ of ϕ ,
ψ ∈ Γ or ¬ψ ∈ Γ. Then, let Rϕ and Vϕ be defined as in the canonical model. It can easily be
seen that the finite model constructed in this way satisfies ϕ .

4.2 Filtration

To prove that a given class of Kripke frames has the finite model property (or better: some
bounded model property), we have to provide a method to transform an infinite model of that
class into a finite model that is also contained in that class. The remark discussed at the end of
the last subsection presents the red line along which such a method can be developed.
Let M be a Kripke model and Γ be a set of formulae. We say that states s and s′ are Γ-
equivalent, s∼Γ s′, if for each formula γ ∈ Γ,

M |=s γ ⇐⇒ M |=s′ γ.

Using the notations from section 2.7, s and s′ are Γ-equivalent if and only if

TM (s)∩Γ = TM (s′)∩Γ.

Let sΓ denote the equivalence class of s with respect to Γ-equivalence.

Lemma 4.4. Let M = 〈S,R,V 〉 be a Kripke model and let Γ be a finite set of Lτ -formulae.
Then |S/∼Γ| ≤ 2|Γ|.

Proof. For each pair of states s and s′, s and s′ are Γ-equivalent if and only if TM (s)∩Γ =
TM (s′)∩Γ. Hence the mapping ι : S/∼Γ→ 2Γ, sΓ 7→ TM (s)∩Γ is well-defined and injective.
Thus, |S/∼Γ| ≤ 2|Γ|. C

Definition 4.4. A set of formulae, Σ, is said to be closed under subformulae if for each ϕ ∈ Σ,
Sub(ϕ)⊆ Σ.

Definition 4.5. Let M be a Kripke model and let Γ be a set of formulae that is closed under
subformulae. A model M ′ = 〈S′,R′,V ′〉 is said to be a filtration of M through Γ if each of the
following conditions is satisfied:

(a) S′ = S/∼Γ;

(b) For all s,s′ ∈ S, s R s′ implies sΓ R′ s′
Γ
;

(c) For all s,s′ ∈ S, if sΓ R′ s′
Γ
, ♦ϕ ∈ Γ, and M |=s′ ϕ , then M |=s ♦ϕ;

(d) For each p ∈ Γ, sΓ ∈V ′(p) if and only if s ∈V (p).

By Lemma 4.4, each filtration through a finite set of formulae, Γ, is a model that has at most
2|Γ| distinct states.
In general, there can be many filtrations through a set of formulae. Two borderline cases are
given as follows: let M ′ be a filtration of M through a set of formulae, Γ. M ′ is said to be the
finest Γ-filtration if for all states s and t,

sΓ R′ tΓ ⇐⇒ there exist s′ ∈ sΓ, t ′ ∈ tΓ with s′ Rt ′. (1)
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M ′ is the coarsest Γ-filtration if for all states s and t,

sΓ R′ tΓ ⇐⇒ for all ♦ϕ ∈ Γ, if M |=t ϕ then M |=s ♦ϕ . (2)

It is worth noting that the defining clause in equation (2) follows from that in equation (1). To
see this, let ♦ϕ be any formula in Γ with M |=t ϕ . Choose s′ ∈ sΓ and t ′ ∈ tΓ such that s′ Rt ′.
Then M |=t ′ ϕ , consequently M |=s′ ♦ϕ , and thus M |=s ♦ϕ .

Theorem 4.5. Let Γ be a finite set of Lτ -formulae that is closed under subformulae. Let M be
a Kripke model and let M ′ be a filtration of M through Γ. Then

TM (s)∩Γ = TM ′(s′)∩Γ,

i.e., for each γ ∈ Γ and each state s of M ,

M |=s γ ⇐⇒ M ′ |=sΓ
γ.

Proof. Straight forward by induction on the degree of γ . Note first that each subformula of γ

is contained in Γ, too. C

Theorem 4.6. The normal modal logic K has the exponentially bounded model property. In
particular, each formula satisfiable in some Kripke model is satisfiable in a Kripke model with
at most 2‖ϕ‖ states.

Proof. By assumption, there exist a model M and a state s such that M |=s ϕ . Set Γ := Sub(ϕ).
Then Γ is a finite set that is closed under subformulae. Furthermore, |Γ| ≤ ‖ϕ‖. Let M ′ be the
coarsest or the finest filtration of M through Γ. Then M ′ has at most 2|Γ| ≤ 2‖ϕ‖ states and
M ′ |=sΓ

ϕ . C

As an immediate conclusion of ??, we thus obtain the following corollary.

Corollary 4.7. SAT(K) and VAL(K) are decidable. C

At this point it is worthwhile to reconsider the proof of Theorem 4.6. There the finest filtration
and the coarsest filtration were sufficiently small models, since both filtrations are defined on a
frame for K. In general this is not the case. For example, in general the coarsest filtration of a
model does not preserve symmetry. To see this, let us consider the set Γ := {p,♦p}, which is
closed under subformulae, and a Kripke model M = 〈S,R,V 〉 with S = {s0,s1}, R = {(s1,s1)},
and V (p) = {s0}. Then the coarsest filtration of M through Γ is given by M ′ = 〈S′,R′,V ′〉
where S′ = {s′0,s′1} (s′i is the Γ-equivalence class of si), and R′ = {(s′0,s′1),(s′1,s′1)}, which is
not symmetric (see Figure 4.1). However, the finest filtration preserves symmetry (as can easily
be checked by its definition).
In general, it holds:

Lemma 4.8. Let M be a Kripke model and let M ′ be any filtration of M through some set of
Lτ -formulae.

(a) If M is serial, then so is M ′.

(b) If M is reflexive, then so is M ′. C

Corollary 4.9. SAT(D) and SAT(T) as well as VAL(D) and VAL(T) are decidable. C
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p,
¬♦ps0

¬p,
¬♦ps1

R

p,
¬♦p s′0

¬p,
¬♦p s′1

R′

R′

Filtration through
Γ = {♦p, p}

Figure 4.1: Coarsest filtration of a symmetric model

4.3 Complexity

In what follows we shall prove that SAT(S5) and VAL(S5) are decidable. At first sight this
result is not very interesting, since we did already prove this fact at the end of section 1.2.
However, by proving that SAT(S5) is decidable we will prove a much stronger result, namely
that reasoning in S5 falls into the same complexity class as reasoning in propositional logic.
This means that although we seem to gain expressive power by using the language of modal
logic, we do not have to pay an essentially more expensive bill in terms of runtime costs.

Some notions from complexity theory: a decision problem ‘x ∈ X?’ is said to be in NP if
‘x ∈ X?’ can be decided by a non-deterministic algorithm in polynomial time (in the size of x);
in other words, if a guessed solution to the problem can be checked in polynomial time. We
say that a decision problem ‘x ∈ X?’ is NP-complete if ‘x ∈ X?’ is in NP and if it is NP-hard,
i.e., if each decision problem ‘y ∈ Y ?’ in NP can be polynomially reduced to ‘x ∈ X?’. A
polynomial-time (many-one) reduction from ‘y ∈ Y ?’ to ‘x ∈ X?’ is a deterministic algorithm
(a recursive function) f that takes as input a word y in the language of ‘y ∈ Y ?’ and returns in
polynomial time a word f (y) in the language of ‘x ∈ X?’ such that

y ∈ Y ⇐⇒ f (y) ∈ X .

Note that the existence of a polynomial reduction of one problem to another gives a transitive
relation. Hence, in order to prove that ‘x ∈ X?’ is NP-complete it is sufficient to show that

(a) ‘x ∈ X?’ is in NP, and

(b) there exists an NP-hard decision problem ‘y∈Y ?’ and a polynomial reduction of ‘y∈Y ?’
to ‘x ∈ X?’.

Analogously, further complexity classes may be introduced as follows:

• EXPTIME: ‘x ∈ X?’ can be decided by a deterministic algorithm in exponential time in
the size of x, i.e., in time ≤ 2|x|

k
for some k > 0.

• 2EXPTIME: ‘x ∈ X?’ can be decided by a deterministic algorithm in double exponential

time in the size of x, i.e., in time ≤ 22|x|
k

for some k > 0.
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• PSPACE: ‘x ∈ X?’ can be decided by a deterministic algorithm that uses polynomially
large space in the size of x.

• NPSPACE: ‘x ∈ X?’ can be decided by a non-deterministic algorithm that uses polynomi-
ally large space in the size of x.

• etc.

There are some relations between these complexity classes that should be listed in this context:

NPSPACE = PSPACE NEXPSPACE = EXPSPACE

P⊆ NP⊆ PSPACE⊆ EXPTIME⊆ NEXPTIME

⊆ EXPSPACE⊆ 2EXPTIME⊆ N2EXPTIME

It is further known that

P 6= EXPTIME NP 6= NEXPTIME
PSPACE 6= EXPSPACE

EXPTIME 6= 2EXPTIME NEXPTIME 6= N2EXPTIME

We will start discussing complexity results by presenting modal logics which are not essentially
more complex than propositional logic. As we have seen, a formula ϕ is valid in some S5-
Kripke model M if and only if for each state s of M , ϕ is valid in the submodel of M
generated by s. But each of these submodels is defined on a universal frame, i.e., a frame
F = 〈S,R〉 with R = S×S. Since the class of all universal frames is a (proper) subclass of that
of all S5-frames, SAT(S5) can be reduced to SAT(C univ), where C univ denotes the class of all
universal frames.

Lemma 4.10. An Lτ -formula ϕ is satisfiable in C univ if and only if it is satisfiable in a universal
frame F = 〈S,R〉 with |S| ≤ ‖ϕ‖.

Proof. The ’if’-direction holds obviously. For the other direction, let M = 〈S,R,V 〉 be a uni-
versal Kripke model and let s0 be a state with M |=s0 ϕ . Define

Nϕ := {♦ψ ∈ Sub(ϕ) : M |=s0 ♦ψ}.

Note that
∣∣Nϕ

∣∣ < |Sub(ϕ)| ≤ ‖ϕ‖ (since no propositional variable occurs in Nϕ ). Then for
each ♦ψ ∈ Nϕ , choose a state sψ ∈ S such that M |=sψ

ψ . Define a universal Kripke model
M ′ = 〈S′,R′,V ′〉 by

S′ := {s0}∪{sψ : ψ ∈ Nϕ}
R′ := S′×S′

V ′(p) :=V (p) (p ∈ P)

By structural induction it is easy to verify that for each s ∈ S′ and each ψ ∈ Sub(ϕ), M |=s ψ

if and only if M ′ |=s ψ . C

Theorem 4.11. SAT(S5) is NP-complete and hence VAL(S5) is coNP-complete.
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Proof. Obviously, SAT(S5) is NP-hard since SAT(PL) is NP-complete and polynomially re-
ducible to SAT(S5).
It remains to be shown that SAT(S5) is in NP. Thereto, let ϕ be any formula. To check its
satisfiability wrt. S5 it is sufficient to consider universal models M with

∣∣M ∣∣ ≤ ‖ϕ‖ (cf.
Lemma 4.10). Then the following non-deterministic algorithm will do the job:

1. “Guess” a universal model M with |S| ≤ ‖ϕ‖ and a state s in M ;

2. Check whether M |=s ϕ .

Step 2 can be done in time O (max(|S| , |R|)) (see Lemma 4.1). Obviously, |R| = |S|2 ≤ ‖ϕ‖2,
and hence this step can be done in polynomial time. C

In what follows let S4.3 be the smallest normal modal logic that is obtained from S4 by adding
the axiom

(.3) �(�p→q)∨�(�q→ p),

It can easily be proven that S4.3 is characterized by the class of all reflexive, transitive, and
weakly connected frames. A frame 〈S,R〉 is said to be weakly connected if for all s,s′,s′′ ∈ S
with s R s′ and s R s′′, s′ R s′′ or s′′ R s′.
One can show that each normal modal logic containing S4.3 has the polynomially bounded
model property. More precisely, any formula that is satisfiable in a frame for Λ is satisfiable
in a frame for Λ that has at most n+ 2 states, where n is the number of occurrences of modal
operators in the formula (see Lemma 6.40 in Blackburn et al. (2002)). However, this is only
part of the story, why for each such normal modal logic the satisfiability problem is in NP.
One must also come up with a characterization of the models (for these logics) that allows for
checking the model relation in polynomial time (in the size of the input formula). For more
details we refer to Theorem 4.103 and Theorem 6.41 in Blackburn et al. (2002)).

Theorem 4.12 (Hemaspaandra’s Theorem). Let Λ be a normal modal logic that contains S4.3.
Then SAT(Λ) is NP-complete. C

The following figure 4.2 shows the relationship of S4.3 to other logics in which axiom .3 is
valid.

K4.3

S4.3 KD45

S5

KL.3

Figure 4.2: Logics above K4.3

A complementary result is the following:
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Theorem 4.13 (Halpern and Rêgo (2007)). For each normal modal logic Λ containing K5,
SAT(Λ) is NP-complete. C

To summarize the results presented so far, some modal logics allow to consider only very small
models for finding a satisfying model. The general situation, however, is not such good. To see
this, we will show that there exists a formula ϕ that is satisfiable in some Kripke model M if
and only if this model contains a binary tree.

Theorem 4.14. The modal logic K does not have the polynomially bounded model property.
More precisely, for each n > 0 there exists a satisfiable formula ϕn such that

(a) ‖ϕn‖ is polynomial in n;

(b) If M is a Kripke model and s0 a state of M with M |=s0 ϕn, then the submodel generated
by s0 contains a full binary tree of depth n.

Proof. Suppose that we have found such a formula ϕn. Since a full binary tree of depth n
contains 2n nodes, each model satisfying ϕn must contain at least 2n states. This shows that K
does not have the PMP.
Let now r0,r1,r2 be an enumeration of all propositional variables of Lτ . Set pi := r2i and
qi := r2i+1 for i ∈N. Then define

βi := qi→♦(qi+1∧ pi+1)∧♦(qi+1∧¬pi+1)

τi := (pi→�pi)∧ (¬pi→�¬pi)

The formula βi expresses binary branching at level i, while τi expresses that the truth values of
the pi are inherited to the next level. In the definition of ϕn we use the following abbreviations:
�kψ :=� · · ·�ψ , and �(k)ψ :=

∧k
i=0�

iψ . Then we set

ϕn := q0 (I)

∧
∧n

i=0�
(n)(qi→

∧n
j=0, j 6=i¬q j) (II)

∧ β0 ∧ �β1 ∧ �2
β2 ∧ �3

β3 ∧ ·· · ∧ �n−1
βn−1 (III)

∧ �τ1 ∧ �2
τ1 ∧ �3

τ1 ∧ ·· · ∧ �n−1
τ1 (IV1)

∧ �2
τ2 ∧ �3

τ2 ∧ ·· · ∧ �n−1
τ2 (IV2)

∧ �3
τ3 ∧ ·· · ∧ �n−1

τ3 (IV3)

∧
...

∧ �n−1
τn−1 (IVn−1)

It is worthwhile to remark that ‖ϕn‖ increases polynomially in n. But a model that satisfies
ϕn+1 must have twice the size of the smallest model that satisfies ϕn. Furthermore, it is clear
that if some model M satisfies ϕn in some state s0, then the submodel generated by s must
contain a binary tree with root s0. The details of the proof are left to the reader. C

The model depicted in Figure 4.3 presents a minimal model of ϕ2. Note that there �τ1 guaran-
tees that s3 6= s5 and s4 6= s6.

In the sequel we will show that SAT(K) is PSPACE-hard. Thereto, we will first present a
reasoning problem which is known to be PSPACE-complete. A quantified Boolean formula
(for short: QBF-formula) is a formula of the form

Q1 p1 . . .Qn pnϕ,
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q0, ¬q1,

¬q2

s0

q1, p1,

¬q0, ¬q2
s1

q2, p2,

¬q0,

¬q1, p1

s3

q2, ¬p2,

¬q0,

¬q1, p1

s4

q1, ¬p1,

¬q0, ¬q2
s2

q2, p2,

¬q0,

¬q1, ¬p1

s5

q2, ¬p2,

¬q0,

¬q1, ¬p1

s6

Figure 4.3: A minimal model satisfying ϕ2.

where n ≥ 0, each Qi ∈ {∀,∃}, and ϕ is a PL-formula with Varϕ ⊆ {p1, . . . , pn}. Note that
⊥ and > are considered as undefined symbols. Hence, formulae of PL in which no quantifier
and no propositional variable occur count as QBF-formulae, too. Semantically, this language
is interpreted as follows:

|= ϕ ⇐⇒ ϕ is PL-valid

|= ∀p 1Q2 p2 . . .Qn pnϕ ⇐⇒ |= Q2 p2 . . .Qn pn ϕ(p1/>) and

|= Q2 p2 . . .Qn pn ϕ(p1/⊥)

|= ∃p 1Q2 p2 . . .Qn pnϕ ⇐⇒ |= Q2 p2 . . .Qn pn ϕ(p1/>) or

|= Q2 p2 . . .Qn pn ϕ(p1/⊥)

For each valid QBF-formula, we can then construct a tree that witnesses its validity. As an
example consider the formula ∀p 1∃p 2∀p 3(p1→ p2 ∨ p3). By reading the tree in Figure 4.4
from its leaves, it is clear that the formula in the root of the tree is QBF-valid.
Note that in that tree each level corresponds to exactly one quantifier of the root formula. A
second example of a QBF-valid formula is ∀p 1∃p 2(p1↔¬p2) (see Figure 4.5).
In what follows we will sketch the proof of a fundamental theorem by Ladner.

Theorem 4.15 (Ladner’s Theorem). For each normal modal logic between K and S4, the prob-
lem of testing satisfiability is PSPACE-hard.

For the proof we will present a translation Φ from the language of QBF-formulae into the
language of modal logic such that

(a) If ϕ is QBF-valid, then Φ(ϕ) is S4-satisfiable;
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∀p 1∃p 2∀p 3(p1→ p2∨ p3)

∃p 2∀p 3(>→ p2∨ p3)

∀p 3(>→>∨ p3)

>→>∨>

p3 7→ >

>→>∨⊥

p3 7→ ⊥

p2 7→ >

p1 7→ >

∃p 2∀p 3(⊥→ p2∨ p3)

∀p 3(⊥→⊥∨ p3)

⊥→⊥∨>

p3 7→ >

⊥→⊥∨⊥

p3 7→ ⊥

p2 7→ ⊥

p1 7→ ⊥

Figure 4.4: ∀p 1∃p 2∀p 3(p1→ p2∨ p3) is a QBF-valid formula.

(b) If Φ(ϕ) is K-satisfiable, then ϕ is QBF-valid.

The following lemma, then, will be sufficient for the proof of Ladner’s theorem:

Lemma 4.16. The problem of testing validity of QBF-formulae is PSPACE-complete. C

Φ(ϕ) is defined like the formula presented in the proof of Theorem 4.14. For a QBF-formula
ϕ = Q1 p1 . . .Qn pn ψ , let q0, . . . ,qn be new propositional variables (“level variables”). Φ(ϕ) is
then defined as follows:

Φ(ϕ) := (I)∧ (II)

∧ �(n)
n−1∧
i=0

(qi→♦qi+1) (IIIa)

∧
∧

1≤i≤n,Qi=∀
�i

βi (IIIb)

∧ (IV)

∧ �(n)(qn→ψ)

Lemma 4.17. For each valid QBF-formula ϕ , Φ(ϕ) is S4-satisfiable.

Proof. Let ϕ = Q1 p1 . . .Qn pn ψ be a valid QBF-formula. As we saw above, we can construct
a tree T with n+ 1 levels that witnesses its validity. In that tree label each node by ‘pi’ that
is obtained by replacing pi by >. We now take the reflexive-transitive closure of this tree, thus
obtaining an S4-frame F . On this frame we define a Kripke model M by

s ∈V (qi) ⇐⇒ s is a node of T at level i

s ∈V (pi) ⇐⇒ s is a node or descendant of a node of
T that is labelled by ‘pi’at level i
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∀p 1∃p 2(p1↔¬p2)

∃p 2(>↔¬p2)

‘p1’

>↔¬⊥
‘¬p2’

p2 7→ ⊥

p1 7→ >

∃p 2(⊥↔¬p2)

‘¬p1’

⊥↔¬>
‘p2’

p2 7→ >

p1 7→ ⊥

Figure 4.5: ∀p 1∃p 2(p1↔¬p2) is QBF-valid.

In the root of M , then, Φ(ϕ) is true. C

As an example of the procedure presented in this proof let us reconsider the QBF-formula
∀p 1∃p 2(p1↔¬p2) (cf. Figure 4.5). The S4-frame that corresponds to that tree is depicted in
Figure 4.6). It can easily be checked that in the root of the tree Φ(ϕ) is true.

Lemma 4.18. If Φ(ϕ) is K-satisfiable, then ϕ is QBF-valid.

Proof. If Φ(Q1 p1 . . .Qn pn ψ) is K-satisfiable, then it is satisfiable in the root s0 of a tree-like
Kripke model M of depth at most n. We cut this tree such that nodes at level i < n have one
or two sucessors: such a node has one successor if and only if Qi+1 is ∃. If the node has two
successors, then choose one in which pi+1 is true and one in which pi+1 is false (such nodes
exist because of condition IIIb). The tree thus obtained will witness that ϕ is QBF-valid. C

Thus, the problem of testing K-satisfiability is PSPACE-hard. In the remainder of this section
we will sketch the proof that SAT(K) indeed is in PSPACE.

Theorem 4.19. SAT(K) is PSPACE-complete.

To sketch the proof of this claim, consider the NPSPACE-algorithm presented in Algorithm 4.1.
One needs to show that the algorithm is correct and complete and that it can be implemented
in such a way that only space polynomial in the size of the input formula is required. By the
Theorem of Savitch, NPSPACE = PSPACE, thus showing the claim.

In what follows, the closure of a formula χ , Cls(χ), is the smallest set of formulae that contains
all subformulae of χ (note that ϕ is a subformula of χ if ϕ is χ or has been used to generate
χ according to the usual syntactic rules) and is closed under single negation (i.e., if ϕ is an
unnegated formula in Cls(χ), then Cls(χ) also contains ¬ϕ). The closure of a formula set Σ

is the smallest superset of Σ that is closed for subformulae and single negation. Finally, Σ is
called closed if it coincides with its closure.

Definition 4.6. Let Σ be a closed set of Lτ -formulae. A Hintikka set over Σ is a maximal subset
H of Σ satisfying the following conditions:

(a) ⊥ /∈ H.
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¬p1,

¬p2, q0,

¬q1, ¬q2

s0

p1, ¬p2,

q1, ¬q0,

¬q2

s1

p1, ¬p2,

¬q0,

¬q1, q2

s3

¬p1,

¬p2, ¬q0,

q1, ¬q2

s2

¬p1,

p2, ¬q0,

¬q1, q2

s4

Figure 4.6: S4-model associated with the QBF-formula ∀p 1∃p 2(p1↔¬p2).

(b) For each ¬ϕ ∈ Σ, ¬ϕ ∈ H if and only if ϕ /∈ H;

(c) For each (ϕ ∧ψ) ∈ Σ, (ϕ ∧ψ) ∈ H if and only if ϕ ∈ H and ψ ∈ H.

Note that Hintikka sets need not be satisfiable. Moreover, a formula ϕ is satisfiable if and only
if there exists a satisfiable Hintikka set H over Cls(ϕ) that contains ϕ .
Without proving it here, we mention (for the proof, see Lemma 6.46 in Blackburn et al. (2002)):

Lemma 4.20. A Hintikka set H is satisfiable (in some Kripke model) if and only if it is satisfi-
able in a finite tree-like model of depth at most max({depthϕ : ϕ ∈ H}).

The interesting aspect is that the “shallow” tree model mentioned in the lemma can be con-
structed from a system H of Hintikka sets that has the following properties: (a) H ∈H ; (b) for
all H ′ ∈H and ♦ψ ∈H ′, there exists an H ′′ ∈H that such that {χ : �χ ∈H ′}∪{ψ} ⊆H ′′;
and (c) for each H ′ ∈H there exists a “chain” H = H0, . . . ,Hn = H ′ ∈H such that for each
0 ≤ i < n, {χ : �χ ∈ Hi}∪{ψi} ⊆ Hi+1 for some ♦ψi ∈ Hi. This fact can be used to show
the correctness of Algorithm 4.1. Note that all sets of formulae occurring while executing the
algorithm are subsets of Cls(ϕ) and hence have an encoding polynomial in the size of ϕ (for
example, if ϕ is represented by its syntax tree, a set of subformulae can be represented by a
list of pointers to nodes in that tree). Moreover, each assignment to Σψ (line 12) reduces the
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Algorithm 4.1 SAT/WITNESS-Algorithm

procedure SAT(ϕ)
inputs: ϕ , a formula of K
returns: true or false

guess a set H ⊆ Cls(ϕ) with ϕ ∈ H
5: return WITNESS(H,ϕ)

procedure WITNESS(H,Σ)
inputs: H,Σ, finite sets of formulae
returns: true (if H is a satisfiable Hintikka set over Cls(Σ)) or false (otherwise)

if H is not a Hintikka set over Cls(Σ) then
10: return false

for ♦ψ ∈ H do
set Σψ := {χ : �χ ∈ H}∪{ψ}
guess a subset Hψ with Σψ ⊆ Hψ ⊆ Cls(Σψ)
if WITNESS(Hψ ,Σψ) = false then

15: return false
return true

Table 4.1: Complexity of the satisfiability problem for selected modal logics

K, KD, KT,
KB, KDB K4, KD4, S4 K5, KD5, KB5,

K45, KD45, S5
general PSPACE-cmpl PSPACE-cmpl NP-cmpl
depth≤ k NP-cmpl PSPACE-cmpl NP-cmpl
depth = 1 NP-cmpl NP-cmpl NP-cmpl

maximal modal depth of the formulae sets that are used as input for the next recursive call
of the WITNESS procedure. Thus, the recursion depth is bounded by the maximal depth of a
formula in Cls(ϕ) and hence by the size of ϕ .

Remark 4.2. Even if the complexity of the general satisfiability problem is PSPACE-hard for
many modal logics, it is often the case that we get tighter complexity bounds when we impose
restrictions on the formulae that are to be checked for satisfiability (Ladner, 1977; Halpern,
1995; Nguyen, 2004). Remark 4.3 gives some overview.

Remark 4.3. For multi-modal languages the complexity of reasoning problems may increase
considerably.

• For n > 1 the satisfiability problem for S5n and KD45n is PSPACE-complete (remember
that for n = 1 the satisfiability problem for these logics is NP-complete).

• If the system K is extended by a further diamond operator which is interpreted by the uni-
versal relation, then for the resulting system the satisfiability problem shifts from PSPACE
to EXPTIME.
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• Later we will discuss a system that allows for modeling common knowledge of n agents.
However, by adding common knowledge to one of the systems K4n, S4n, KD45n, or S5n,
the complexity of the satisfiability problem increases from PSPACE to EXPTIME, though
the resulting system still has the finite model property.
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5 Decision Procedures

In this section we will present decision procedures for testing satisfiability or validity of for-
mulae in some of the more prominent modal logics. We will start with tableaux algorithms, as
these have been widely used in modal logics (and related logics such as description logics) to
implement reasoners.
In general, we have different reasoning tasks in such logics:

Satisfiability problem. Given a normal modal logic Λ and an Lτ -formula ϕ , is ϕ satisfiable
in some (Kripke) model for Λ?

Validity problem. Given a normal modal logic Λ and an Lτ -formula ϕ , is ϕ valid in each
(Kripke) model for Λ?

Model checking problem. Given a model M , a state s0 in the model and a formula ϕ , is ϕ

satisfied in s0.

While for most modal logics the model checking problem can be solved in polynomial time (in
the size of the input model and the input formula), the first two problems are for many modal
logics computationally hard problems (we will return to this point in the next section).
Remember that the satisfiability and the validity problem are dual problems: a formula ϕ is
satisfiable in a class of frames if and only if its negation is not valid in that class.

5.1 A tableaux procedure for K(m)

Tableaux procedures aim at constructing a model that shows that an input formula is satisfiable.
The key idea of these procedures is to construct a tableau, a graph representing such a model, by
applying iteratively so-called expansion rules (also called completion rules). For many logics
these graphs are trees; this explains why tableaux are also referred to as truth trees): the root
of the tree is given by the input formula, and in each step the nodes of the tree are expanded,
while the formulae in parent nodes are transformed to simpler formulae in the child nodes.
In what follows we confine to the basic modal logic K(m). The basic tableaux rules then are
the following:

α-rules:

s |= ¬ϕ

s 6|= ϕ

s 6|= ¬ϕ

s |= ϕ

s |= ϕ ∧ψ

s |= ϕ

s |= ψ

s 6|= ϕ ∨ψ

s 6|= ϕ

s 6|= ψ

s 6|= ϕ→ψ

s |= ϕ

s 6|= ψ

β -rules:
s |= ϕ ∨ψ

s |= ϕ s |= ψ

s |= ϕ→ψ

s 6|= ϕ s |= ψ

s 6|= ϕ ∧ψ

s 6|= ϕ s 6|= ψ

ν-rules:
s |=�ϕ

s R♦ s′

s′ |= ϕ

s 6|= ♦ϕ

s R♦ s′

s′ 6|= ϕ
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π-rules:
s 6|=�ϕ

s R♦ s′

s′ 6|= ϕ

where s′ is a fresh
state name

s |= ♦ϕ

s R♦ s′

s′ |= ϕ

where s′ is a fresh
state name

As can be seen from the rules, we are considering “state-labelled” formulae of the form s |= ϕ

and s 6|= ϕ , where s is a state name and ϕ is a modal-logical formula. Starting from a state-
labelled formula (the input formula that is to be tested for satisfiability labelled with an arbitrary
state name), one iteratively applies these rules on the branches of the tree so-far constructed:
a rule may be applied on a branch, when every antecedent of the rule occurs in the branch. A
branch is closed if it contains a clash, i.e., state-labelled formulae s |= ϕ and s 6|= ϕ . Non-closed
branches are called open. A branch is finished if no rule can be applied on it. An open branch
that contains state-labelled formulae s |= p or s 6|= p for each propositional variable p occurring
in the root formula defines a Kripke model that makes the statement of the root formula true.
So if the root is of the form s |= ϕ , the open branch defines a Kripke model in which ϕ is true at
state s: this shows that ϕ is satisfiable. If the root is of the form s 6|= ϕ , the open branch gives a
counterexample showing that ϕ is not valid. Hence in order to prove that a formula ϕ is valid,
one tries to find a counterexample by developing the tableau of s 6|= ϕ . When each branch is
closed, the formula is indeed valid; otherwise, it is not.

Remark 5.1. α- and β -rules handle the propositional-logical connectives. α-rules are deter-
ministic rules: applying one of them on a branch in a tableau, they just expand the current
branch. Contrary to this, β -rules are non-deterministic, i.e., they generate alternative child
nodes and thus alternative completions of the current branch. We will see that both α- and
β -rules need to be applied only once. ν- and π-rules handle the modal-logical connectives.
ν-rules are also deterministic rules, but it may be necessary to apply them more than one time
on a state-labelled formula s |= �ϕ (or s 6|= ♦ϕ) occurring in the current branch. π-rules are
also deterministic (given a fixed sequence of “unused” state names), but need to be applied
only once.

Examples of tableaux proofs are presented in Figures 5.1 – 5.3. The first example is a simple,
propositional logic example: the tableau proves that the formula p→ (q→ (p∧q)) is valid in
K(m). The second example shows that axiom K is valid and the third example shows that the
formula ♦p∧♦q→♦(p∧q) is not valid.

The idea of the (semantic) tableaux method presented above is to construct Kripke models.
In order to make this explicit, we introduce the notion of completion trees (which represent
“partial” Kripke models) and reformulate the tableaux rules in a way that shows how the rules
modify these trees. For the sake of simplicity we make the following assumptions: (a) we
assume a setting in which ¬,∧,∨,♦i,�i (1 ≤ i ≤ m) are chosen as syntactic primitives; and
(b) we assume that the formulae that are input to the tableaux procedure are in negation normal
form, i.e., the negation symbol occurs only in front of propositional variables.
Remember that the closure of a formula χ , Cls(χ), is the smallest set of formulae that contains
all subformulae of χ and is closed under “single” negation (i.e., if ϕ is an unnegated formula
in Cls(χ), then Cls(χ) also contains ¬ϕ).

Definition 5.1. A completion tree for a formula χ is a (vertex- and edge-labeled) graph Gχ =
〈V,A,L〉, where V is a set of vertices, A is a set of arcs on V (i.e., A ⊆V 2), and L is a labeling
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s0 6|= p→ (q→ (p∧q))

s0 |= p

s0 6|= q→ (p∧q)

s0 |= q

s0 6|= p∧q

s0 6|= p s0 6|= q

X X

Figure 5.1: An example of a propositional logic tableau

s0 6|=�(p→q)→ (�p→�q)

s0 |=�(p→q)

s0 6|=�p→�q

s0 |=�p

s0 6|=�q

s0 R♦ s1

s1 6|= q

s1 |= p→q

s1 |= p

s1 6|= p s1 |= q

X X

Figure 5.2: Tableau proof of axiom K
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s0 6|= ♦p∧♦q→♦(p∧q)

s0 |= ♦p∧♦q

s0 6|= ♦(p∧q)

s0 |= ♦p

s0 |= ♦q

s0 R♦ s1

s1 |= p

s0 R♦ s2

s2 |= q

s1 6|= p∧q

s2 6|= p∧q

s1 6|= p s1 6|= q

s2 6|= p s2 6|= q
X

O X

Figure 5.3: Constructing a counterexample by a tableau proof
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function that assigns to each v ∈V a set L(v)⊆ Cls(χ) and to each arc a = (v,v′) ∈ A a natural
number L(a) ∈ {1, . . . ,m}.

Given a completion tree 〈V,A,L〉, we can reformulate the tableaux rules for our syntactic setting
as described in the following definition.

Definition 5.2. The tableaux rules for K(m) are the following:

∧-rule. If ϕ ∧ψ ∈ L(v) and {ϕ,ψ} 6⊆ L(v), then set L(v)← L(v)∪{ϕ,ψ}.

∨-rule. If ϕ ∨ψ ∈ L(v) and {ϕ,ψ} ∩ L(v) = /0, then set L(v)← L(v)∪ {ϕ} or set L(v)←
L(v)∪{ψ}.

♦-rule. If ♦iϕ ∈ L(v) and there is no v′ ∈ V with (v,v′) ∈ A, L(v,v′) = i, and ϕ ∈ L(v′), then
extend V by a fresh node v∗ and set A← A∪{(v,v∗)}, L(v∗)←{ϕ}, and L(v,v∗)← i.

�-rule. If�iϕ ∈ L(v) and there is some v′ ∈V with (v,v′)∈ A, L(v,v′) = i, and ϕ /∈ L(v′), then
set L(v′)← L(v′)∪{ϕ}.

Definition 5.3. A completion tree G = 〈V,A,L〉 is said to be clash-free if there is no v∈V such
that {p,¬p} ⊆ L(v) for some propositional variable p. A completion tree is called complete
if none of the completion rules presented in Definition 5.2 can be applied. A complete and
clash-free completion tree is also often referred to as tableau.

We say that a completion tree 〈V,A,L〉 is satisfiable if there exists a Kripke model M with frame
〈S,{R♦i}1≤i≤m〉 such that V ⊆ S, {a ∈ A : L(a) = i} ⊆ R♦i (1 ≤ i ≤ m), and M |=v L(v) for
each v∈V . Note that for the definition of the model it is sufficient to interpret the propositional
variables that occur in the closure of the input formula.

Lemma 5.1.
(a) A completion tree G is satisfiable if and only if one of the completion trees resulting from

applying any K(m) tableaux rule on G is satisfiable.

(b) A completion tree that contains a clash is not satisfiable.

(c) If a completion tree 〈V ′,A′,L′〉 is complete and clash-free, then

S :=V ′, R♦i := {a ∈ A′ : L′(a) = i}, V (p) := {s ∈ S : p ∈ L′(s)}

defines a Kripke model M that trivially satisfies M |=s L′(s) for each state s. C

In what follows we describe the tableaux procedure in more detail. Algorithm 5.1 provides a
rather sketchy version that closely reflects the basic idea: apply the tableaux rules on the initial
completion tree that is given by the input formula. If a clash is detected in the completion
tree, we return unsatisfiable; if the completion tree is clash-free and complete, we have found
a Kripke model that satisfies the completion tree and hence also satisfies the completion tree
defined by the input formula of the procedure. If the completion tree is clash-free, but not com-
plete, we can apply further rules and then check the satisfiability of the modified completion
tree. Note that this algorithm is non-deterministic. For proving its correctness we may assume
that (when possible) the right choice is made whenever the ∨-rule is applied.

Remark 5.2. Notice that a non-deterministic Turing machine accepts a word if at least one
computation on the input word results in an accepting state. It should be noted that the
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Algorithm 5.1 CHECKSAT (non-deterministic version)

procedure CHECKSAT(ϕ)
inputs: ϕ , a formula of K(m) in NNF
returns: satisfiable or unsatisfiable

V ←{v0} , A← /0 , L(v0)←{ϕ}
5: return COMPLETETREE(〈V,A,L〉)

procedure COMPLETETREE(G)
inputs: G, a completion tree
returns: satisfiable or unsatisfiable

if G contains a clash then
10: return unsatisfiable

if G is complete then
return satisfiable

G← apply some completion rule on some formula in G
return COMPLETETREE(G)

non-deterministic version of the CHECKSAT algorithm involves different versions of non-
determinism. First, with regard to correctness of the algorithm, it is irrelevant which rule is
applied in each step (“don’t care” non-determinism). Contrary to that, it is essential which
choice is made when the ∨-rule is applied (“don’t know” non-determinism).

Algorithm 5.2 provides a deterministic version. It uses two auxiliary functions: SELECTFOR-
MULA selects a formula from one of the label sets L(v) in the completion tree that is not a literal
(a literal is a formula of the form p or ¬p where p is a propositional variable); to avoid early
branching, it is in most cases reasonable to defer the selection of an ∨-formula or a ♦-formula
as long as possible. APPLYRULE takes as input a completion tree, a vertex in that tree, and a
formula (on which a rule can be applied) and returns the list of completion trees that result from
applying an appropriate rule (as listed in Definition 5.2); in the case of the ∧-, �-, or ♦-rule
the resulting list consists of a single completion tree and in the case of the ∨-rule it consists of
two completion trees (one for each choice).
The search for a tableau for an input formula starts with an initial completion tree with ex-
actly one vertex v0 that has a singleton label set containing the input formula. On this initial
completion tree we execute the procedure COMPLETETREE, which searches for a clash-free
and complete completion of the input tree in depth-first manner. On an input completion tree
COMPLETETREE first checks, whether the completion tree is clash-free and whether still rules
can be applied on a formula occurring in one of the label sets. When we have found a clash, we
need to backtrack. If we have found a clash-free and complete completion tree, we are finished
and thus the algorithm returns “satisfiable”. Otherwise, we select one of the formulae on which
rules can be applied, generate a list of possible completion trees, and execute in a recursive
manner on each of these trees COMPLETETREE. Note that in each recursive call, COMPLETE-
TREE operates on a completion tree in which some label set will contain new formulae of
smaller degree. Thus, eventually we will end up with a completion tree in which no rule can
be applied any more (on any vertex introduced earlier into the completion tree). This shows
that COMPLETETREE will not generate an infinite sequence of completion trees in which each
results from its predecessor by applying a rule. That is, termination of the tableaux procedure
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is guaranteed. Moreover, Lemma 5.1 shows that CHECKSAT is correct.

Algorithm 5.2 CHECKSAT (deterministic version)

procedure CHECKSAT(ϕ)
inputs: ϕ , a formula of K(m) in NNF
returns: satisfiable or unsatisfiable

V ←{v0} , A← /0 , L(v0)←{ϕ}
5: return COMPLETETREE(〈V,A,L〉)

procedure COMPLETETREE(G)
inputs: G, a completion tree
returns: satisfiable or unsatisfiable

if G contains a clash then
10: return unsatisfiable

if G is complete then
return satisfiable

v,ψ ← SELECTFORMULA(G)
C← APPLYRULE(G,v,ψ)

15: for G′ in C do
result← COMPLETETREE(G′)
if result = satisfiable then

return satisfiable
return unsatisfiable

20: procedure SELECTFORMULA(G)
inputs: G, a completion tree
returns: selects a vertex v and a non-literal formula ψ in L(v)

procedure APPLYRULE(G,v,ψ)
inputs: G, a completion tree; v, a vertex in G; ψ , a formula in L(v) on which

25: some completion rule r can be applied
returns: the list of completion trees resulting from applying rule r on ψ ∈ L(v)

5.2 Tableaux procedures for other modal logics

How can the decision procedure for the modal logic K(m) presented in the last section be
extended to other modal logics such as multi-modal variants of KT or K4? In general, there
are two different ways for dealing with such logics. To illustrate these, consider the modal
logic KT, the modal logic of reflexive frames. One way to ensure that the frame associated to
a complete and clash-free completion tree is reflexive is to introduce a self-arc for each vertex
generated while executing CHECKSAT (that is, we have to change the definition of the initial
completion tree that is passed to COMPLETETREE and modify the♦-rule). The other possibility
is to apply axiom T on each label set, that is, we extend the rule set listed in Definition 5.2 by
a new rule

�r-rule. If �iϕ ∈ L(v), ♦i is a reflexive modality, and ϕ /∈ L(v), then set L(v)← L(v)∪{ϕ}.
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Moreover, the Kripke model associated to a complete and clash-free completion tree needs to
be adapted: Given such a completion tree, the accessibility relation of a reflexive modality ♦i is
not just the set of arcs a with L(a) = i, but the reflexive closure of this set. The main advantage
of the latter method is that we preserve a tree structure of completion “trees”.

While extending the tableaux procedure on reflexive modalities is simple, the case of transitive
modalities is more involved. The reason for this is that a naive extension will lead to a non-
terminating procedure. As an example consider the formula ♦p∧�(p→♦p) where ♦ is a
transitive modality. By applying the ♦-rule on ♦p ∈ L(v), we will generate a new vertex v′

with L(v′) = {p}. When we apply the �-rule on �(p→♦p) ∈ L(v), we need to extend L(v′)
by p→♦p and hence eventually by ♦p. Thus we will add a new vertex v′′ to the completion
tree (a successor of v′) with L(v′′) = {p}. By “transitivity” (in either of the ways described
above implemented), we will extend L(v′′) by the formula p→♦p and thus we will need to
introduce a further vertex, etc.
This problem can be dealt with by a technique called blocking. The idea is to block the expan-
sion of a completion tree whenever the process runs into a “loop”, that is, the newly generated
vertex together with its labels set contains only irrelevant information that is already encoded
in its parent vertex or somewhere else in the completion tree. In the case of transitivity, the
blocking condition is as follows: A vertex v is said to block v′ if L(v′)⊆ L(v) (subset blocking)
and v is called a witness for v′ (note that is not required that there is an (v,v′) ∈ A). Hence we
have a modified ♦-rule and an additional rule that employs axiom 4 to add further formulae to
“neighbored” label sets.

♦’-rule. If (a) ♦iϕ ∈ L(v), (b) v is not blocked, and (c) there is no v′ ∈ V with (v,v′) ∈ A,
L(v,v′) = i, and ϕ ∈ L(v′), then extend V by a fresh node v∗ and set A← A∪{(v,v∗)},
L(v∗)←{ϕ}, and L(v,v∗)← i.

�+-rule. If (a) �iϕ ∈ L(v), (b) ♦i is a transitive modality, and (c) there is some v′ ∈ V with
(v,v′) ∈ A, L(v,v′) = i, and �iϕ /∈ L(v′), then set L(v′)← L(v′)∪{�iϕ}.

Do these modifications guarantee termination? This is not clear in the general setting where
one considers more refined blocking conditions and/or does not fix the order in which rules are
applied. For example, it may happen that a blocked vertex is getting unblocked when further
rules are applied on the parent vertex that modify the blocked vertex in such a way that the
blocking condition does no longer hold (dynamic blocking). For this reason it makes sense to
defer the execution of the generating ♦-rule on a vertex until no non-generating rule can be
applied any more on any available vertex in the completion tree (static blocking). Moreover, if
no rule is applied that modifies the label set of a blocking vertex, a blocked vertex cannot get
unblocked any more. This “strategy” of rule application ensures that no infinite sequence of
completion trees in which each tree results from its predecessor by some rule application can
be generated.

Lemma 5.2. Let G = 〈V,A,L〉 be a completion tree for a formula χ and nχ = |Cls(χ)|.
(a) Let G′ be the result of applying one of the completion rules on G under the static blocking

strategy. If v′ is blocked by v in G, then it is also blocked by v in G′.

(b) IfV contains more than 2nχ elements, then there exist v,v′ ∈V with L(v) = L(v′).

(c) Let G′ be the result of applying a finite number of completion rules on G under the static
blocking strategy. Then G′ contains at most 2nχ non-blocked vertices.
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(d) Let G′ be any completion tree resulting from G by finitely many rule applications under
the static blocking strategy. Then the number of vertices in the completion tree G′ is
bounded by 22·nχ .

Proof. (a) Obviously, each rule application can only monotonically add formulae to label sets
of unblocked vertices (because of static blocking). Hence if L(v′)⊆ L(v) holds in G, this subset
relation must be true in G′ as well.

(b) Since each L(v) is a subset of Cls(χ), there are at most 2nχ pairwise distinct label sets.

(c) If G′ contains more than 2nχ unblocked nodes, then there exist unblocked vertices v,v′ in
G′ with L(v) = L(v′). Since all vertices are introduced in some order, we may assume that v
had been added to V before v′ was added. But this means that at some step vertex v blocks v′

(in contradiction to the assumption that v′ is unblocked): by (a), a blocked vertex cannot get
unblocked by further rule applications under the static blocking strategy.

(d) In each finite sequence of rule applications we can only generate 2nχ non-blocked vertices
in the completion tree. Under the given strategy, rules are only applied on these non-blocked
vertices. Each non-blocked vertex can have at most 2nχ outgoing arcs in the completion tree
(since label sets contain at most 2nχ formulae) and blocked vertices do not have outgoing arcs.
This entails that the number of possibly introduced vertices in the completion tree is bounded
by 2nχ ×2nχ = 22·nχ . C

5.3 Optimization techniques

In this section we describe some optimization techniques for tableaux procedures: these tech-
niques aim at either improving search (for example, reduce the width of the search tree and
skip irrelevant branching points when backtracking after a clash has been detected).

Semantic branching. The ∨-rule as given in Definition 5.2 performs syntactic branching:
when it is applied on a disjunction ϕ ∨ψ ∈ L(v), one first checks whether, say, L(v)∪{ϕ}
leads to a clash in the modified completion tree. If so, one continues with L(v)∪{ψ}. But this
means that the information is lost that L(v)∪{ϕ} (and hence each superset of this label set)
leads to a clash. To avoid this it is suggesting to continue with the label set L(v)∪{ψ,¬ϕ}
(or: L(v)∪{ψ,NNF(¬ϕ)}) when the decision L(v)∪{ϕ} turns out to be unsatisfiable. This
technique is called semantic branching: it is based on the propositional logic equivalence (ϕ ∨
ψ) ↔ (ϕ ∨ (¬ϕ ∧ψ)). A potential drawback of semantic branching is that adding ¬ϕ to
the label set increases the amount of formulae that need to be processed further on: such
formulae may be disjunctions or ♦-formulae and hence may lead to the generation of new, but
unnecessary vertices in the completion tree or branching nodes during search.

Local simplification, Boolean constraint propagation. Local simplification methods aim
at reducing the width of the search tree by simplifying formulae before non-deterministic com-
pletion rules are applied. A special simplification method is Boolean constraint propagation:
the idea is to use literals occurring in a label set in order to simplify in a deterministic way
disjunctions in such sets. For example, if a label set L(v) contains the formulae p∨ϕ and
¬p, L(v) can be immediately extended by the formula ϕ . An example combining semantic
branching with Boolean constraint propagation is depicted in Figure 5.4. The benefit of such
propagation techniques is that search space is never increased. A potential drawback is that in
order to use propagation techniques efficiently, more complex data structures for representing
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formulae may be necessary. Horrocks (2003) reports that such techniques perform well on ran-
domly generated problem instances, in particular on over-constrained instances that are likely
to be unsatisfiable.

Clash in L(v)

Clash in L(v)

L(v)←∪ {ϕ ∨ψ}
L(v)←∪ {ϕ ∨χ}

L(v)←∪ {. . .}

L(v)←∪ {ϕ} L(v)←∪ {ψ}

L(v)←∪ {ϕ} L(v)←∪ {χ}

Clash in L(v)

L(v)←∪ {ϕ ∨ψ}
L(v)←∪ {ϕ ∨χ}

L(v)←∪ {. . .}

L(v)←∪ {ϕ} L(v)←∪ {ψ,¬ϕ}

L(v)←∪ {χ}

Figure 5.4: Syntactic vs semantic branching (combined with Boolean constraint propagation)

Enhancements of backtracking search. As an alternative to the simple backtracking scheme,
more sophisticated schemes have been discussed in the literature: a typical problem for back-
tracking search is thrashing, i.e., search nodes are explored although they will not lead to a
“solution”.
An example of such an alternative backtracking scheme is dependency directed backjumping,
initially developed in the CSP field. The main idea is to equip each search node with a set
of search nodes it depends on. When during search we discover that the current search node
cannot lead to a solution, we do not just revise the last decision, but perform a backjump to the
last search node on which the current search node depends.
In our context, in which the search nodes are given by completion trees, this basic idea can be
implemented as follows: each completion tree generated during search that has more than one
successor (decision node, branching node) is augmented with an identifier that is unique to the
currently explored branch in the search tree. Furthermore, each formula in each label set as
well as each arc records the decision nodes it depends on: a formula ϕ ∈ L(v) is said to depend
on a decision node n if ϕ has been added to L(v) at n or ϕ depends on another formula ψ ∈ L(v)
that depends on n or an arc (v′,v)∈ A that depends on n. ϕ ∈ L(v) depends on ψ ∈ L(v) if ϕ has
been added to L(v) by applying some deterministic rule on ψ ∈ L(v). ϕ ∈ L(v) depends on an
arc (v′,v) ∈ A if ϕ has been added to L(v) by applying some deterministic rule mentioning this
arc. An arc (v′,v) depends on a formula ψ ∈ L(v′) if v has been introduced by an application
of the ♦-rule on ψ ∈ L(v′).
During search we record these dependency relations. For example, if ϕ has been added to L(v)
by applying the �-rule on ψ ∈ L(v′), the dependency set of ϕ ∈ L(v), denoted Dv(ϕ), will be
the union of the dependency sets of ψ ∈ L(v′) and of the arc (v′,v). If we apply the ♦-rule on
a formula ♦ψ ∈ L(v) (thus generating a new node v∗), the dependency set of the arc (v,v∗) and
the dependency set of ψ ∈ L(v∗) both will be set to the dependency set of ♦ψ ∈ L(v).
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Thus, if the search results in a completion tree with a clash {ϕ,¬ϕ} ⊆ L(v), we perform a
backjump to the maximal member in the union of the dependency sets Dv(ϕ) and Dv(¬ϕ).
Figure 5.5 presents an example: depicted is a part of the search tree when the tableaux proce-
dure is processed on a formula of the form (p1∨q1)∧ (p2∨q2)∧♦ϕ ∧ (�(¬ϕ ∧ψ)∨ . . .).
In general, dependency directed backjumping results in a significant simplification of the tra-
versed search tree.

d0

d1

d2

d3

d4

Clash in L(v′)

L(v)←∪ {p1 ∨ q1}
L(v)←∪ {p2 ∨ q2}

L(v)←∪ {♦ϕ}

Dv(p1 ∨q1) := {d0}
Dv(p2 ∨q2) := {d0}

Dv(♦ϕ) := {d0}

L(v)←∪ {�(¬ϕ ∧ψ)}
Dv(�(¬ϕ ∧ψ)) := {d1}

L(v)←∪ {. . .}
Dv(. . .) := {d1}

L(v)←∪ {p1}
Dv(p1) := {d2} L(v)←∪ {q1}

L(v)←∪ {p2}
Dv(p2) := {d3} L(v)←∪ {q2}

V ←∪ {v∗}
A←∪ {(v,v∗)}
L(v∗)←∪ {ϕ}

D(v,v∗) := Dv(♦ϕ) = {d0}
Dv∗ (ϕ) :=Dv(♦ϕ)= {d0}

L(v∗)←∪ {¬ϕ ∧ψ}
Dv∗ (¬ϕ ∧ψ) :=

Dv(�(¬ϕ ∧ψ))∪D(v,v∗) = {d0,d1}
Dv∗ (¬ϕ) := Dv∗ (¬ϕ ∧ψ)

jump back to maximal

element in Dv∗ (ϕ)∪
Dv∗ (¬ϕ) = {d0,d1}

Figure 5.5: Dependency directed backjumping (Figure adapted from Horrocks (2003))

Search heuristics. Search heuristics aim at guiding search when decisions need to be made.
In the context of the tableaux procedure heuristics come into play when one has to decide
which disjunct in a disjunctive formula occurring in a label set is to be selected first. One
method (developed in the SAT field and applicable in the context of tableaux proofs as well) is
the so-called MOMS heuristic. The slogan of the MOMS heuristic is “select a formula that has
the maximal number of occurrences in disjunctions of minimal size”. The MOMS heuristic
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aims at optimizing Boolean constraint propagation: if such a disjunct leads to a clash, Boolean
constraint propagation will reduce the branching of subsequently explored search nodes.

The drawback of the MOMS heuristic is that it does not perform well in combination with
dependency directed backjumping. Moreover, it may depend on the problem instances to be
solved whether the MOMS heuristic provides useful information for selecting a disjunct.

Another search heuristic that is particularly useful in combination with dependency directed
backjumping is the oldest-first heuristic. The idea is here to use the dependency sets generated
during search to select a disjunct that depends on the oldest decision node in the currently
expanded branch of the search tree. More precisely, one selects a disjunction that has the
oldest element in its dependency set. Further heuristics can be combined with this heuristic to
guide the selection of a disjunct in such a disjunction.

The benefit of using search heuristics is that they often can be combined efficiently with back-
tracking schemes. Moreover, search heuristics may be selected dependent on the formula that
needs to be processed.
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