can we transfer this (impossibly) result to social choice function?
Yes!
It is even worse:
We can show that it is impossible
for any social choice function to
be immune to

\[f: \mathbb{R}^n \rightarrow \mathbb{R} \]

\[f(c_1, \ldots, c_n) = c_i \]

and

\[a \preceq b \]

implies

\[f(a_1, \ldots, a_n) \preceq f(b_1, \ldots, b_n) \]

Proposition
A social choice function is

\[\text{intransitive} \]

if it is

\[\text{intransitive}. \]

Proof:
Let \(f \) be intransitive: it \(f(c_1, \ldots, c_i, \ldots, c_n) = a \) and

\[f(c_1, \ldots, c', \ldots, c_n) = b \]

and \(a \preceq c_i \preceq b \preceq a \)
and \(a \preceq b \). Then \(f \) cannot be transitive since \(a \preceq c_i \preceq b \preceq a \) and

\[f(c_1, \ldots, c_i, \ldots, c_n) = a \]

and

\[f(c_1, \ldots, c', \ldots, c_n) = b \] and \(a < b. \)

\[\text{Suppose intransitivity is violated, i.e.,} \]

\[\exists a, b \in A: f(c_1, \ldots, c_i, \ldots, c_n) = a \text{ and} \]

\[f(c_1, \ldots, c', \ldots, c_n) = b \text{ and} \]

\(a \preceq c_i \preceq b \preceq a \) and

\(a \preceq b \). If \(a \preceq c_i \preceq b \preceq a \) and

\[a \preceq b. \]

then assume \(a \preceq c_i \preceq b \) do the preference \(c_i \)

\[\text{in manipulate again}. \]
Def
A function \(f: X \to Y \) is called **dictatorial** on \(X \) if for all \(y \in Y \) there exists \(x \in X \) such that \(f(x) = y \).

Def (Dictatorship)
A function \(f: X \to Y \) is called a **dictator** on \(X \) if for all \(x, y, z \in X \) such that \(f(x) = y \) and \(f(z) = y \), then \(x = z \).

Theorem (Borda - Substitutivity)
If \(f \) is an incentive compatible and onto social function over at least three alternatives, then \(f \) is a dictatorship.

Proof:
- Use Arrow's Theorem.
- Construct a social welfare function from a social choice function.
- Construction is clear (i.e., directly from an incentive compatible and onto and non-dictatorial social choice function).
- The construction ensures that the social welfare function satisfies IIA, monotonicity, and non-dictatorial.