One Deviation Property:
Let $\Gamma = (N, A, H, P, (\mathcal{U}_i)_{i \in N})$ be a finite-horizon EAGRE. Then a strategy profile s^* is an SPE of Γ if for every player $i \in N$ and every history $h \in H$ with $P(h) = i$, we have

$$u_i(h, (s^*_{-i}h, s^*_ih)) \geq u_i(h, (s^{\pi}_ih, s^*_ih))$$

for every strategy s^π_i of player i in the subgame $\Gamma(h)$ that differs from s^*_ih only in the action after the initial history of $\Gamma(h)$.

For infinite-horizon games, the one-deviation property does not hold.

\textbf{Counterexample (2-player game):}

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Consider strategy $s_i(h) = A$ for all $h \in H \setminus 1$.

Now, s_i is not an SPE.

For all histories in H, there is no profitable deviation from s_i. But deviating from s_i gives higher payoff than D.

\textbf{Theorem (Kuhn):} Every finite extensive game with perfect information has a SPE.

\textbf{Proof Idea:}

- Constructive: build a SPE bottom-up (backward induction)
- Similar to minimax procedure from info to AE class.

\textbf{Example:}
Proof: Let \(\Gamma = (N, A, H, P, (a_i)) \) be a finite ENEPE. Construct a SPE by induction on \(l(\Gamma(h)) \) for \(h \in H \). Let \(\Gamma(h) \) be the strategy profile for all players \(i \in N \) s.t. \(t_i(h) \) is the payoff of player \(i \) in a SPE in subgame \(\Gamma(h) \). Base case: If \(l(\Gamma(h)) = 0 \), then \(t_i(h) = u_i(h) \) for all \(i \in N \).

Inductive case: Assume that \(t_i(h) \) is already defined for all \(h \in H \) with \(l(\Gamma(h)) \leq k \). Consider a history \(h^* \in H \) with \(l(\Gamma(h^*)) = k+1 \). Assume \(P(h^*) = i \). Let

\[
\begin{align*}
 s_i(h^*) &= \arg\max_{a \in A_i(h^*)} t_i(h^*, a) \\
 t_j(h^*) &= \max_{a \in A_j(h^*, s_i(h^*))} t_j(h^*, a)
\end{align*}
\]

for all \(j \in N \).

Inductively, we obtain a strategy profile that satisfies the one-deviation property (by construction). From the induction step, it follows that the constructed profile is indeed a SPE. \(\square \)