Extensive Games

Finite game means the set \(H \) is finite. 0

Finite horizon was defined as "no infinite history" 0

Osborne/Rafelski: "If the largest history is finite, then all stories are finite, too."

The right definition: "If there exists an upper bound for the length of the histories, then the game is a finite horizon game."

Strategies in extensive games

Strategies & action s

Def (strategy)

Let \(\Gamma = \langle N, A, H, P, u \rangle \) be a EGP. Then the set of actions a with \((h,a) \in H \) are denoted by \(A(h) \). A strategy of player \(i \) is a function \(s_i : H \rightarrow A(i) \) that assigns to each non-terminal history \(h \in H \setminus C \) with \(P(h) \) an action as \(A(i) \). The set of strategies of player \(i \) is denoted by \(S_i \).

Remark: Strategies require no decision and no delay histories, even if it is clear they will never be played!

The outcome of strategy \(s \) is denoted by \(O(s) \).

Example

Def (NE)

A Nash Equilibrium of an extensive game with perfect information \(\Gamma \) is a strategy profile \(s^* = (s_i^*) \) such that for each player \(i \in N \):

\[u_i(O(s^*)) \geq u_i(O(s^*_{-i}, s_i)) \]

for all \(s_i \in S_i \).
Definition:

The strategic game \(G' \) induced by an extensive game \(G \) is defined by:

\[G' = (N', \{A'_i\}, \{v'_i\}) \]

where

\[A'_i = S, \quad A' = S \]

\[v'_i(a) = v_i (O(a)) \]

Proposition:

The NE of an EGWRI \(G \) are exactly the NE of the induced strategic game \(G' \).

Remarks:

1. Each EGWRI can be transformed into a strategic game, but this created game may be exponentially larger.
2. The other direction does not work because we need kn Online Simultaneous Actions.