Complexity of Solving Strategic Games

The basic problem:

NASH: Given a finite 2-player strategic game \(G \),
find a mixed strategy profile \((\sigma, \pi)\) that is a NE of \(G \) if one exists, else return "no".

SAT: Given a Boolean formula \(\phi \) in CNF,
find a truth assignment that makes \(\phi \) true
if one exists, else return "no".

In this form, \(\text{NASH} \) looks similar to other search problems, e.g.:

SAT:
Given a Boolean formula \(\phi \) in CNF,
find a truth assignment that makes \(\phi \) true
if one exists, else return "no".

PPAD: class of search problems that can be polynomially reduced to \(\text{END-OF-LINE} \).

END-OF-LINE: Consider a directed graph with
node set \(\{0, 1, 2, \ldots, n\} \) such that each node
has out- and in-degree at most \(2 \). The graph
is specified by two poly-time functions
\(f \) and \(g \):

\[f(v) \text{ :\: \text{ successor candidate of } } v \text{ \text{ or empty} } \]
\[g(v) \text{ :\: \text{ predecessor candidate of } } v \text{ \text{ or empty} } \]

In the graph there is an arc \(v \rightarrow v' \) if and only if \(f(v) = v' \) and \(g(v) = v \).
Given a source node \(s \) in the graph, find some node \(t \) such that \(t \) has in-degree 0 or
in-degree 1, source.

Polynomial Purity

Argument in Directed Graphs

Examples:

Notice:
- \(\text{TFP} \subseteq \text{PPAD} \subseteq \text{TFNP} \subseteq \text{TFD} \)
- Lenstra-Haken algorithm has exponential
 time complexity in the worst case.

Theorem (Daskalakis et al., 2006)
\(\text{NASH} \) is \(\text{PPAD} \)-complete.

2^nd \(\text{NASH} \): Given a finite 2-player game \(G \)
and a NE of \(G \), find a second NE of
\(G \) if one exists, else return "no".

Theorem
- **2^nd \(\text{NASH} \)** is \(\text{TFP} \)-complete.

Proof Idea:
- Reduction from SAT
Some further results: Given a finite 2-player game G, it is difficult to decide whether there exists a NASH (x, y) in G that has one of the following properties:

(a) player 1 (or 2) receives a payoff $\geq k$. -> Guaranteed payoff problem
(b) $U_2(x, y, z) \geq U_2(x, y, z')$ for all z, z'. -> Guaranteed social welfare problem
(c) (x, y) is Pareto-optimal, i.e., there is no strategy profile (x', y') such that

$$U_1(x', y) \geq U_1(x, y) \text{ for both } i \in \{1, 2\}, \text{ and }$$
$$U_2(x', y') \geq U_2(x, y') \text{ for at least one } i \in \{1, 2\}.$$

(d) player 1 (or 2) plays some given action with probability > 0.

Extensive Games

So far: only simultaneous, one-shot games

Question: How to model the sequential structure of many games (e.g., chess?)?

Approach: Use extensive games (a = game tree)

Idea: Players have several choice points where they can decide how to play. Strategies then map choice points to applicable actions.

Definition: An extensive game with perfect information (EGWI) is a tuple $\Gamma = \langle N, A, H, P, (u): E \rangle$ where:

- N is a finite, nonempty set of players,
- A is a nonempty set of actions,
- H is a set of (finite or infinite) sequences over A (called histories) such that:
 - the empty sequence $<> \in H$;
 - if $<a_1, a_2, \ldots, a_k> \in H$ for some $K \in N \cup \{0\}$ and $L \leq K$, then $<a_1, a_2, \ldots, a_L> \in H$;
 - if $<a_1, a_2, \ldots, a_k>$ is an action sequence such that $<a_1, a_2, \ldots, a_L> \in H$ for each $L \in N$, then $<a_1, a_2, \ldots, a_k> \in H$.

Assumptions:

- All the ingredients of Γ are common knowledge among the players of the game.
- The set of terminal histories is denoted by T.
- $P : H \times Z \rightarrow N$ is the player function assigning to each non-terminal history h in H a player $P(h)$ whose turn it is to move after h.
- For each player $i \in N$, $u_i : Z \rightarrow R$ is player i's utility function.

Some terminologies:

- Γ is finite if H is finite.
- Γ has finite horizon if H contains no infinite histories.

Examples:

- Γ is finite if H is finite.
- Γ has finite horizon if H contains no infinite histories.
Example (Sharing Game): Two players have to share two indistinguishable objects.
- Player 1 proposes an allocation.
- Player 2 accepts or declines the proposal.

Game tree:

Formally, \(T = \langle N, A, H, \Pi, (\mu_i)_{i \in N} \rangle \) where

- \(N = \{ 1, 2 \} \)
- \(A = \{ (1,0), (1,1), (2,1), \varnothing, 3 \} \)
- \(H = \{ (>) , \langle (2,0) \rangle , \langle (2,1) \rangle , \langle (0,2) \rangle , \langle (2,0), 3 \rangle , \langle (2,1), \varnothing \rangle , \langle (1,4), \varnothing \rangle , \ldots \} \)
- \(Z = \{ h \in H : |h| = 2 \} \)
- \(\Pi(>) = 1, \quad \Pi(\varnothing) = 2 \quad \forall h \in H \setminus \{ (2,0), 3 \} \)
- \(\mu_1((2,0), \varnothing) = 2, \quad \mu_1((1,1), 1) = 0 \)