Multiagent Systems

 13. BargainingB. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

$$
\text { July 16, } 2014
$$

Where are we?

- Different auction types and properties
- Combinatorial Auctions
- Bidding Languages
- The VCG mechanism

Today ...

- Bargaining

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
? \rightarrow ?
setting
Division of
Resources
Task
Allocation

Resource
Allocation
Summary

Bargaining

- Aim: Reaching agreement in the presence of conflicting goals and preferences (e.g., distribution of goods, prize of a good, political agreements, meeting place)
- ...similar to a multi-step game with specific protocol
- General setting for bargaining/negotiation:
- The negotiation set is the space of possible proposals
- The protocol defines the proposals the agents can make, as a function of prior negotiation history
- Strategies determine the proposals the agents will make (private)
- A rule that determines when a deal has been struck (agreement deal)

Negotiation scenarions

- Number of issues:
- Single issue, e.g. price of a good
- Multiple issues, e.g. buying a car: price, extras, service
- Concessions may be hard to identify in multiple-issue negotiations
- Number of possible deals: m^{n} for n attributes with m possible values
- Number of agents:
- one-to-one, simplified when preferences are symmetric
- many-to-one, e.g. auctions
- many-to-many, $n(n-1) / 2$ negotiation threads for n agents

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Conditions on negotiation protocols

Implementing negotiation in MAS needs interaction protocols. What are good protocols?

- Efficiency: Agreed solution does not waste utility (e.g., is Pareto optimal or maximizes social welfare)
- Stability: In the agreed-upon solution no agent has an incentive to deviate (Nash equilibrium)
- Simplicity: Required interaction according to the protocol

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl has low computational overhead (e.g. for communication, determining optimal behavior)

- Distribution: Protocol does not require a central decision maker
- Symmetry: Negotiation process should not be biased against or towards one of the agents
- Effectiveness: When possible, agreement should be reachable, when all agents follow the protocol
Multiagent
Systems
B. Nebel,
C. Becker-
Asano,
S. Wölfi

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Division of Resources

Alternating offers

A common one-to-one protocol: alternating offers

- Negotiation takes place in a sequence of rounds
- Agent 1 begins at round 0 by making a proposal x^{0}
- Agent 2 can either accept or reject the proposal
- If the proposal is accepted the deal x^{0} is implemented
- Otherwise, negotiation moves to the next round where agent 2 makes a proposal

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Example: Dividing the Pie

Scenario: Dividing the pie

- There is some resource whose value is 1
- The resource can be divided into two parts, such that the

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl values of each part must be between 0 and 1 the sum of the values of the parts sum to 1

- A proposal is a pair $(x, 1-x)$ (meaning: agent 1 gets x, agent 2 gets $1-x$)
- The negotiation set is: $\{(x, 1-x): 0 \leq x \leq 1\}$

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Example: Dividing the Pie

Scenario: Dividing the pie

- There is some resource whose value is 1
- The resource can be divided into two parts, such that the values of each part must be between 0 and 1 the sum of the values of the parts sum to 1
- A proposal is a pair $(x, 1-x)$ (meaning: agent 1 gets x, agent 2 gets $1-x$)
- The negotiation set is: $\{(x, 1-x): 0 \leq x \leq 1\}$

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Some assumptions:

- Disagreement is the worst outcome, we call this the conflict deal Θ
- Agents seek to maximize utility

Negotiation rounds

- Special case 1: one single negotiation round (\rightsquigarrow ultimatum game)
- Suppose that player 1 proposes to get all the pie, i.e. $(1,0)$
- Player 2 will have to agree to avoid getting the conflict deal Θ
- Player 1 has all the power

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation

Resource
Allocation
Summary

Negotiation rounds

- Special case 1: one single negotiation round (\rightsquigarrow ultimatum game)
- Suppose that player 1 proposes to get all the pie, i.e. $(1,0)$
- Player 2 will have to agree to avoid getting the conflict deal Θ
- Player 1 has all the power
- Special case 2: Two rounds of negotiation

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation

- Player 1 makes a proposal in the first round
- Player 2 can reject and turn the game into an ultimatum

Resource
Allocation
Summary

Negotiation rounds

- Special case 1: one single negotiation round (\rightsquigarrow ultimatum game)
- Suppose that player 1 proposes to get all the pie, i.e. $(1,0)$
- Player 2 will have to agree to avoid getting the conflict deal Θ
- Player 1 has all the power
- Special case 2: Two rounds of negotiation
- Player 1 makes a proposal in the first round
- Player 2 can reject and turn the game into an ultimatum
- More generally: If the number of rounds is fixed, whoever moves last gets all the pie...

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Negotiation rounds

- If there are no bounds on the number of rounds:
- Suppose agent 1 's strategy is: propose $(1,0)$, reject any other offer

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Negotiation rounds

- If there are no bounds on the number of rounds:
- Suppose agent 1 's strategy is: propose $(1,0)$, reject any other offer
- If agent 2 rejects the proposal, the agents will never reach agreement (the conflict deal is enacted)
- Agent 2 will have to accept to avoid Θ

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation

Negotiation rounds

- If there are no bounds on the number of rounds:
- Suppose agent 1 's strategy is: propose $(1,0)$, reject any other offer
- If agent 2 rejects the proposal, the agents will never reach

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Time

- Additional assumption: Time is valuable (agents prefer outcome x at time t_{1} over outcome x at time t_{2} if $t_{2}>t_{1}$).
- Model agent i 's patience using a discount factor δ_{i} $\left(0 \leq \delta_{i} \leq 1\right)$:
the value of slice x at time 0 is $\delta_{i}^{0} \cdot x=x$
the value of slice x at time 1 is $\delta_{i}^{1} \cdot x=\delta_{i} \cdot x$ the value of slice x at time 2 is $\delta_{i}^{2} \cdot x=\delta_{i} \cdot \delta_{i} \cdot x$

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources

Allocation
Resource
Allocation
Summary

Time

- Additional assumption: Time is valuable (agents prefer outcome x at time t_{1} over outcome x at time t_{2} if $t_{2}>t_{1}$).
- Model agent i 's patience using a discount factor δ_{i} $\left(0 \leq \delta_{i} \leq 1\right)$:
the value of slice x at time 0 is $\delta_{i}^{0} \cdot x=x$
the value of slice x at time 1 is $\delta_{i}^{1} \cdot x=\delta_{i} \cdot x$
the value of slice x at time 2 is $\delta_{i}^{2} \cdot x=\delta_{i} \cdot \delta_{i} \cdot x$
Interesting results:
- More patient players (larger δ_{i}) have more power
- Games with two rounds of negotiation:
- The best possible outcome for agent 2 in the second round

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary is δ_{2}

- If agent 1 initially proposes $\left(1-\delta_{2}, \delta_{2}\right)$, agent 2 can do no better than accept
- Games with no bounds on the number of rounds
- Agent 1 proposes what agent 2 can enforce in the second

Negotiation Decision Functions

- Non-strategic approach, does not depend on how other's

Multiagent
Systems behave

- Agents use a time-dependent decision function to determine what proposal they should make
- Boulware strategy: exponentially decay offers to reserve price
- Conceder strategy: make concessions early, do not concede much as negotiation progresses

Seller strategies
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary
MultiagentSystems
B. Nebel,C. Becker-
Asano,
S. Wölfi
General

Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Task Allocation

Task-oriented domains

To model the negotiation for re-allocating tasks we consider so-called task-oriented domains (Rosenschein \& Zlotkin, 1994).

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

Simplifying assumptions:

- Each agent has a given set of tasks she has to achieve
- Tasks are indivisible units,
- ... can be carried out without interference from other agents, and
- ... all necessary resources are available
- Agents can redistribute their tasks by negotiation (thus improving their utility)
- TODs are inherently cooperative

Task-oriented domains (I)

Task-oriented domain

A task-oriented domain (TOD) is a triple $\langle T, A g, c\rangle$ where:
Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

- T a finite set of tasks,
- $A g=\{1, \ldots, n\}$ is a set of agents, and
- $c: 2^{T} \rightarrow \mathbb{R}_{0}^{+}$is function describing the cost of executing any set of tasks (symmetric for all agents) such that $c(\emptyset)=0$, and that c is monotonic i.e.

$$
T^{\prime}, T^{\prime \prime} \subseteq T \text { and } T^{\prime} \subseteq T^{\prime \prime} \Longrightarrow c\left(T^{\prime}\right) \leq c\left(T^{\prime \prime}\right)
$$

An encounter in a TOD is a collection $\left(T_{1}, \ldots, T_{n}\right)$ with $T_{i} \subseteq T$ for each agent $i \in \operatorname{Ag}$ (T_{i} is the set of tasks to be performed by agent i).

Task allocation: An example

The Postmen Domain

Several postmen have to deliver letters to mailboxes located in
Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl the same neighborhood, and then return to the post office.

Representation: The addresses on the letters are represented by the node set of a weighted graph $G=\langle V, E\rangle$, where the weights on edges represent distances between neighbored mailboxes.
Task set: Each task is given by a address (i.e., deliver at least one letter to the address); hence the set of all tasks is V.
Costs: The cost of $X \subseteq V$ is the length of the shortest path starting in the post office, visiting all nodes in V, and ending in the post office.

Task-oriented domains (II)

Following, we only consider encounters in two-agent TODs. A deal is a pair $\delta=\left(D_{1}, D_{2}\right)$ such that $D_{1} \cup D_{2}=$ $T_{1} \cup T_{2}$ (agent i is committed to perform tasks D_{i} in such a deal). Def. $\operatorname{cost}_{i}(\delta):=c\left(D_{i}\right)$, and $u t i l_{i}(\delta):=c\left(T_{i}\right)-\operatorname{cost}_{i}(\delta)$.

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

- Utility represents how much agent gains from the deal
- If no agreement is reached, conflict deal is $\Theta=\left(T_{1}, T_{2}\right)$
- A deal δ_{1} dominates another deal δ_{2} (symb. $\delta_{1}>\delta_{2}$) if δ_{1} is at least as good as δ_{2} for every agent (i.e. $\operatorname{util}_{i}\left(\delta_{1}\right) \geq \operatorname{util}_{i}\left(\delta_{2}\right)$, for $\left.i=1,2\right)$ and better for at least some agent (i.e. $\operatorname{util}_{i}\left(\delta_{1}\right)>\operatorname{util}_{i}\left(\delta_{2}\right)$, for $i=1$ or $i=2$)

General
setting
Division of
Resources
Task
Allocation

Resource
Allocation
Summary

- If δ is not dominated by any other δ^{\prime}, then δ is called Pareto optimal.
- A deal is individual rational if it weakly dominates (i.e. is at least as good as) the conflict deal Θ.

Negotiation sets

Negotiation set: set of deals that are individual rational and Pareto-optimal.

- Each agent can guarantee to get utility 0 (by always rejecting). Rational agent will not accept deals with negative utility.

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

- Agreeing on not Pareto-optimal deals is inefficient.
this oval

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

The monotonic concession protocol

- Start with simultaneous deals proposed by both agents

Multiagent
Systems (i.e., a pair of deals $\left(\delta_{1}, \delta_{2}\right)$) and proceed in rounds

- Agreement reached if

$$
\text { either } \operatorname{util}_{1}\left(\delta_{2}\right) \geq \operatorname{util}_{1}\left(\delta_{1}\right) \text { or } \operatorname{util}_{2}\left(\delta_{1}\right) \geq \operatorname{util}_{2}\left(\delta_{2}\right)
$$

- If both proposals match or exceed other's offer, outcome is chosen at random between δ_{1} and δ_{2}.
- If no agreement, in round $t+1$ agents are not allowed to make deals less preferred by other agent than proposal made in round t.
- If no proposals are made or both do not concede, negotiation terminates with outcome Θ.

Protocol is verifiable and guaranteed to terminate, but not necessarily efficient (exponential in the number of tasks that are to allocated).

The Zeuthen strategy (I)

- The above protocol doesn't describe when and how much

Multiagent
Systems to concede

- Intuitively, agents will be more willing to risk conflict if difference between current proposal and conflict deal is low
- Model how much agent i 's is willing to risk a conflict at round t by sticking to her last proposal:

$$
\text { risk }_{i}^{t}=\frac{\text { utility lost by conceding and accepting } j \text { 's offer }}{\text { utility lost by not conceding and causing conflict }}
$$

B. Nebel,
C. Becker-

Asano,
S. WölfI

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

$$
\operatorname{risk}_{i}^{t}= \begin{cases}1 & \text { if } u \operatorname{uti}_{i}\left(\delta_{i}^{t}\right)=0 \\ \frac{\operatorname{uti}_{i}\left(\delta_{i}^{t}\right)-u t i l_{i}\left(\delta_{j}^{t}\right)}{u t i l_{i}\left(\delta_{i}^{t}\right)} & \text { otherwise }\end{cases}
$$

The Zeuthen strategy (II)

Zeuthen strategy

(1) Start negotiation by proposing a deal that is best for you among all deals in the negotiation set.

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. WölfI
(2) In every following round t calculate risk ${ }_{i}^{t}$ for you and opponent. If your risk is smaller or equal to the other's risk value, propose a deal with minimal concession such that the balance of risk is changed.

- Problem if agents have equal risk: we have to flip a coin, otherwise one of them could defect (and conflict would occur)
- Looking at our protocol criteria:

Protocol terminates, doesn't always succeed, simplicity? (too many deals), Zeuthen strategies are Nash, no central authority needed, individual rationality (in case of agreement), Pareto optimality

Resource Allocation

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

Bargaining for resource allocation (I)

Resource allocation setting

A resource allocation setting is a tuple $\left\langle A g, \mathcal{Z}, v_{1}, \ldots, v_{n}\right\rangle$, with:

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

- agents $A g=\{1, \ldots, n\}$,
- resources $\mathcal{Z}=\left\{z_{1}, \ldots, z_{m}\right\}$,
- valuation functions $v_{i}: 2^{\mathcal{Z}} \rightarrow \mathbb{R}$ (one for each agent)

An allocation is a partition $\left(Z_{1}, \ldots, Z_{n}\right)$ of the resources over the agents.

Idea: Starting from some initial allocation $P^{0}=\left(Z_{1}^{0}, \ldots, Z_{n}^{0}\right)$ agents can bargain to improve the value of package of resources assigned to them.
Negotiating a change from Z_{i} to $Z_{i}^{\prime}\left(Z_{i}, Z_{i}^{\prime} \subseteq \mathcal{Z}\right.$ and $\left.P_{i} \neq Q_{i}\right)$ will lead to:

$$
\text { - } v_{i}\left(Z_{i}\right)<v_{i}\left(Z_{i}^{\prime}\right), v_{i}\left(Z_{i}\right)=v_{i}\left(Z_{i}^{\prime}\right), \text { or } v_{i}\left(Z_{i}\right)>v_{i}\left(Z_{i}^{\prime}\right)
$$

Bargaining for resource allocation (II)

Agents can make side payments as compensation for loss in
Multiagent
Systems utility: $p_{i}<0$ means that agent i receives $-p_{i} ; p_{i}>0$ means that i contributes p_{i} to the amount that is distributed among the agents with negative pay-off.

- A pay-off vector is a tuple $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of side payments such that $\sum_{i} p_{i}=0$.
- A deal is a triple $\left\langle Z, Z^{\prime}, p\right\rangle$, where $Z, Z^{\prime} \in \operatorname{alloc}(\mathcal{Z}, A g)$ are distinct allocations and p is a pay-off vector.
- A deal $\left\langle Z, Z^{\prime}, p\right\rangle$ is individually rational if

$$
v_{i}\left(Z_{i}^{\prime}\right)-p_{i}>v_{i}(Z)
$$

for each $i \in \operatorname{Ag}\left(p_{i}\right.$ is allowed to be 0 if $\left.Z_{i}=Z_{i}^{\prime}\right)$.

- Pareto-optimal allocation: every other allocation that makes some agents strictly better off makes some other agent strictly worse off

Protocol for resource allocation

Resource allocation

(1) Start with initial allocation Z^{0}.
(2) Current allocation is Z^{0} with 0 side payments.
(3) Any agent is permitted to put forward a deal $\left\langle Z, Z^{\prime}, p\right\rangle$

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting where Z is the current allocation.
(4) If all agents agree and the termination condition is satisfied (i.e. Pareto optimality), then the negotiation terminates and deal Z^{\prime} is implemented with payments p.
(5) If all agents agree but the termination condition is not satisfied, then set current allocation to Z^{\prime} with payments p and continue in step 3.
(6) If some agent is not satisfied with the deal, go to step 3 .

Restricted deals

Finding optimal deals is NP-hard, focus on restricted deals

- One-contracts: move only one resource and one side payment
- Restricts search space, agent needs to consider

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl $\left|Z_{i}\right| \cdot(n-1)$ deals

- Can always lead to socially optimal outcome, but requires agents to accept deals that are not individually rational
- Cluster-contracts: transfer of any number of resources greater than 1 from one agent to another one (do not receive any resources in return)
- Swap-contracts: swap one resource and make side payment

General
setting
Division of
Resources
Task
Allocation
Resource
Allocation
Summary

- Multiple-contracts: three agents, each transferring a single resource
- C-contracts, S-contracts and M-contracts do not always lead to an optimal allocation

Summary

- Bargaining
- Alternating offers
- Negotiation decision functions
- Task-oriented domains
- Bargaining for resource allocation
- Next time: Argumentation in Multiagent Systems

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

Acknowledgments

These lecture slides are based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley \& Sons, 2nd edition 2009.
- Jeffrey Rosenschein and Gilad Zlotkin: Rules of Encounter, PIT Press, 1994, 1998.

Multiagent
Systems
B. Nebel,
C. Becker-

Asano,
S. Wölfl

General
setting
Division of
Resources
Task
Allocation

Resource
Allocation
Summary
Thanks

