Multiagent Systems 12. Resource Allocation

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

July 11, 2014

1 / 27

Multiagent Systems July 11, 2014 — 12. Resource Allocation

- 12.1 Motivation
- 12.2 Single Item Auctions
- 12.3 Combinatorial Auctions
- 12.4 Summary

12.1 Motivation

What we've learned so far

Last time we learned:

- ► Coalition Games with Goals
 - Goals, not numeric utilities, as targets for agents
 - Qualitative coalition games
 - Coalition resource game
- Coalition Structure Formation
 - Maximizing social welfare, instead of individual agent's utility
 - Number of coalition structures exponential in the number of coalitions

Today: Resource Allocation

Resource allocation: background

The situation:

- ► Only scarce resources available
- ► More than one agent interested in resources
- ⇒ How to allocate resources **efficiently**, i.e. allocate them to those agents that value them the most?

Auctions are a solution; different types introduced today:

- English auctions
- Dutch auctions
- First-price sealed-bid auctions
- Vickrey auctions
- Combinatorial auctions

Classifying auctions

Auction protocol and strategy are effected by several factors:

- 1. Value of good:
 - public/common (standard one dollar bill)
 - private (bill signed by Bill Clinton), or
 - correlated (special bill, but reselling value also important)
- 2. Auction protocol:
 - ▶ Winner determination: first-price or second-price auction
 - ► Bidding procedure: **open cry** or **sealed-bid**
 - ► Mechanism: one-shot or ascending/descending
- 3. Single versus multiple items

Next, private/correlated, first-price, open-cry, ascending, single item auction:

 \Rightarrow English auction

12.2 Single Item Auctions

English auctions

Auction	Auction Action protocol	
English auction	first-price, open cry, one-shot, ascending	single

English auction (EA) perhaps the most commonly known type of auction (Sotheby's):

- ► Procedure:
 - 1. Auctioneer suggests reservation price (may be zero)
 - 2. Agents must bid more than the current highest bid
 - 3. All agents see the bids being made and can place bids at any time
 - No more bids ⇒ current highest bid wins and agent has to pay amount of his bid
- ▶ If value is correlated, counterspeculation can occur
- ▶ Dominant strategy in private EA: bid a small amount above highest current bid until one's own valuation reached

Winner's curse: Why did no other agent value the good so highly? Did I pay too much?

Dutch auctions

Auction	Action protocol	# items
Dutch auction	first-price, open cry, one-shot, descending	single

Dutch auction (DA):

- Procedure:
 - 1. Auctioneer starts with **artificially high value** much above the expected value of any bidder's valuation
 - 2. Auctioneer continuously lowers the offer price by small value until . . .
 - 3. Some agent makes a bid for the good equal to the current offer price
 - 4. The agent has to pay amount of his bid
- ► DA is also susceptible to winner's curse

First-price, sealed-bid auctions

Auction	Action protocol	# items
First-price sealed-bid	first-price, sealed-bid, one-shot	single

First-price sealed-bid auction is simplest of all auctions considered here:

- Procedure:
 - Single round, in which bidders submit their bids privately to the auctioneer
 - 2. Auctioneer awards good to agent with highest bid
 - 3. The agent has to pay amount of his bid
- ▶ Dominant strategy: Bid less than its true value
- Problem: How much less?
- ▶ No general solution as it depends on the other agents

Vickrey auctions

Auction	Action protocol	# items
Vickrey auction	second-price, sealed-bid, one-shot	single

Vickrey auctions:

- Probably the most counterintuitive auction type
- ► Procedure:
 - Single round, in which bidders submit their bids privately to the auctioneer
 - 2. Auctioneer awards good to agent with highest bid
 - 3. The agent has to pay amount of second-highest bid!
- Dominant strategy: Bidders bid their true valuations
- ▶ not prone to strategic manipulation
- not very popular in real life, but very successful in computational auction systems
- ▶ Problem: anti-social behavior might occur

Expected revenue

The expected revenue of the auctioneer depends on attitudes of auctioneers and bidders:

- ► Risk-neutral bidders: revenue provably identical in all four auctions (under certain simple assumptions)
- ► Risk-averse bidders: Dutch and first-price sealed-bid auctions best for auctioneer's revenue as risk-averse bidders 'insure' themselves by bidding slightly more than true valuation
- ► Risk-averse auctioneers: Prefer Vickrey or English auction over first-price sealed-bid and Dutch

Important:

- ► For first result private values must exist in agents
- ► In general, auction scenario must carefully be analyzed when choosing auction protocol

Lies and collusion

Ideally:

- 1. auctioneer wants a protocol to be immune to collusions by bidders
- 2. bidders want honesty to be dominant strategy for auctioneer

Solutions:

- 1. immune to collusions ⇒ bidders don't know each other
- honest auctioneer ⇒ open-cry auctions or third party handles bids (esp. in case of second price auction)

Further opportunity for auctioneer to manipulate: place bogus bidders, known as shells to realize shill bidding

 \Rightarrow esp. problematic in online auctions such as ebay

Single item auctions overview

Auction	Action protocol	Auctioneer's revenue best when
English auction	first-price, open cry, one-shot, ascending	auctioneers risk-averse
Dutch auction	first-price, open cry, one-shot, descending	bidders risk-averse
First-price sealed-bid	first-price, sealed-bid , one-shot	bidders risk-averse
Vickrey auction	second-price, sealed- bid, one-shot	auctioneers risk-averse

Counterspeculation:

- bidders try to gain information either about true value of good, or about the valuations of other bidders
- ▶ If free and accurate, then every agent would do it
- ► Otherwise, only if agent's expected result with costly counterspeculation no worse than result without

12.3 Combinatorial Auctions

- Bidding languages
- Winner determination
- VCG mechanism I

Combinatorial Auctions

Vickrey auctions work well for single items. How about resources that are divisible?

- ⇒ Combinatorial auctions:
 - Generalized model of resource allocation
 - ▶ Auctioning bundles of goods $\mathcal{Z} = \{z_1, \dots, z_n\}$ (e.g. frequency bands of the mobile phone network)
 - New valuation function $v_i: \mathbf{2}^{\mathcal{Z}} \to \mathbb{R}$ indicates how much each $Z \subseteq \mathcal{Z}$ is worth to agent i
 - Important properties of valuation functions:
 - ▶ Normalization: $v(\emptyset) = 0$
 - ▶ Free disposal: $Z_1 \subseteq Z_2 \Rightarrow v(Z_1) \leq v(Z_2)$
 - ▶ Outcome: allocation $Z_1, Z_2, ..., Z_n$ of goods being auctioned among the agents

Combinatorial Auctions & social welfare

One natural property combinatorial auctions should satisfy is \Rightarrow maximization of social welfare

$$\begin{split} Z_1^*,\dots,Z_n^* &= \underset{(Z_1,\dots,Z_n)\in \mathsf{alloc}(\mathcal{Z},Ag)}{\mathsf{arg}} \mathsf{sw}\big(Z_1,\dots,Z_n,v_1,\dots,v_n\big) \\ &\quad \mathsf{where} \ \mathsf{sw}\big(Z_1,\dots,Z_n,v_1,\dots,v_n\big) = \sum_{i=1}^n v_i(Z_i) \end{split}$$

- ▶ Winner determination: computing the optimal allocation Z_1^*, \ldots, Z_n^* given the valuations submitted by bidders
- ► Strategic manipulation: agents may not reveal their true valuations (e.g. may overstate the value of bundles)
- ► Representational complexity: exponential in the number of goods (listing all possible valuations of all bundles)
- ► Computational complexity: winner determination is NP-hard even under restrictive assumptions

Bidding languages

As before, most succinct representation schemes for valuation function preferred; first option: Atomic bid

- ightharpoonup eta = (Z, p), where $Z \subseteq \mathcal{Z}$ and $p \in \mathbb{R}_+$ is the price
- ▶ A bundle of goods Z' satisfies (Z, p) if $Z \subseteq Z'$, e.g.:
 - ▶ Bundle $\{a, b, c\}$ satisfies the atomic bit $(\{a, b\}, 4)$
 - ▶ Bundle $\{b, d\}$ does not satisfy the atomic bid $(\{a, b\}, 4)$
- ightharpoonup An atomic bid $\beta = (Z, p)$ defines the valuation function v_{β}

$$v_{\beta}(Z') = \begin{cases} p & \text{if } Z' \text{ satisfies } (Z, p) \\ 0 & \text{otherwise} \end{cases}$$

Not sufficient to express very interesting valuation functions

XOR bids

XOR bids: Specify a number of bids, but par for at most one

- lacksquare $\beta = (Z_1, p_1) \text{ XOR } \ldots \text{ XOR } (Z_k, p_k), \text{ for example:}$ $\beta_1 = (\{a, b\}, 3) \text{ XOR } (\{c, d\}, 5)$ \Rightarrow "I would pay 3 for a bundle that contains a and b but not c and d; 5 for a bundle with c and d but not a and b; and 5 for a bundle with a, b, c, and d."
- Formally:

$$v_{eta}(Z') = egin{cases} 0 & ext{if } Z' ext{ does not satisfy any of} \ & (Z_1,p_1),\dots,(Z_k,p_k) \ & ext{max}\{p_i|Z_i\subseteq Z'\} & ext{otherwise} \end{cases}$$

- XOR bids are fully expressive
- ightharpoonup number of bids may be exponential in $|\mathcal{Z}|$
- \triangleright $v_{\beta}(Z)$ can be computed in polynomial time

OR bids

OR bids: Combine more than one atomic statement disjunctively

- ▶ $\beta = (Z_1, p_1)$ OR ... OR (Z_k, p_k) , for example: $\beta_1 = (\{a, b\}, 3)$ OR $(\{c, d\}, 5) \Rightarrow v_{\beta_1}(\{a, b, c, d\}) = 8$
- ▶ valuation function v for $Z' \subseteq \mathcal{Z}$ is determined w.r.t. atomic bids W so that:
 - 1. every bid in W is satisfied by Z'
 - 2. each pair of bids in W has mutually disjoint sets of goods
 - 3. there is no other subset of bids W' from W satisfying the first two conditions that $\sum_{(Z_i,p_i)\in W'} p_i > \sum_{(Z_j,p_j)\in W} p_j$
- ▶ Not fully expressive, consider: $v({a}) = 1, v({b}) = 1, v({a,b}) = 1$
- Can be exponentially more succinct than XOR bids

Winner determination I

Winner determination is combinatorial optimization problem ⇒ find sets of goods that maximizes some valuation function:

- ▶ Proven to be NP-hard in worst case
- ► Optimal solution calculated using standard technique ⇒ integer linear programming:
 - **objective function** to maximize: $f(x_1, \ldots, x_k)$
 - ▶ subject to **constraints**: $\phi_1(x_1, \dots, x_k), \phi_2(x_1, \dots, x_k), \dots, \phi_l(x_1, \dots, x_k)$
- ▶ With set \mathcal{Z} of goods, set $Ag = \{1, ..., n\}$ of agents, and valuation functions $v_1, ..., v_n$ (one per agent), $Z \subseteq \mathcal{Z}$:
 - ▶ introduce variables $x_{i,Z}$, with $x_{i,Z} = 1$, if bundle Z is allocated to agent i, otherwise $x_{i,Z} = 0$
 - ► Note: many such variables need to be introduced!

Winner determination II

Winner determination can be encoded as integer linear program:

- $\qquad \text{maximize: } \sum_{i \in Ag, Z \subseteq \mathcal{Z}} x_{i,Z} v_i(Z)$
- subject to constraints:

1.
$$\sum_{i \in Ag, Z \subseteq \mathcal{Z} | z \in Z} x_{i,Z} \le 1$$
 for all $z \in \mathcal{Z}$

- 2. $\sum_{Z \subseteq \mathcal{Z}} x_{i,Z} \leq 1$ for all $i \in Ag$
- 3. $x_{i,Z} \geq 0$ for all $i \in Ag, Z \subseteq \mathcal{Z}$

Meaning of constraints:

- 1. Don't allocate any good more than once
- 2. Each agent is allocated no more than one bundle
- 3. Assures that all variables are either 0 or 1 (together with previous constraints)

This approach works "surprisingly well in many cases." (Wooldridge, p. 307)

Naïve mechanisms are prone to strategic manipulation, thus

 \Rightarrow design mechanism such that, if agents act rationally, dominant strategy is (again) to tell true valuation function

Vickrey-Clarke-Grooves mechanism (VCG mechanism) is generalization of Vickrey's auction from single to divisible goods

Terminology:

- lacksquare 'Indifferent' valuation function $v^0(Z)=0$ for all $Z\subseteq\mathcal{Z}$
- $sw_{-i}(Z_1,\ldots,Z_n)=\sum_{j\in Ag: j\neq i}v_j(Z_j)$, social welfare of all agents but i

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Fredhuumige)gent Systems

VCG mechanism II

The Vickrey-Clarke-Grooves mechanism:

- 1. Agents declare valuation functions \hat{v}_i (may not be true)
- 2. Mechanism chooses allocation maximizing social welfare:

$$Z_1^*,\ldots,Z_n^* = \mathop{\arg\max}_{(Z_1,\ldots,Z_n)\in\mathsf{alloc}(\mathcal{Z},Ag)} \mathit{sw}\big(Z_1,\ldots,Z_n,\hat{v}_1,\ldots,\hat{v}_i,\ldots,\hat{v}_n\big)$$

- 3. Every agent pays to the mechanism or receives from it an amount p_i :
 - compensation' for the utility other agents lose by i participating, or
 - 'reward' for improving the overall utility (then $p_i < 0$)

$$p_i = sw_{-i}(Z_1', \dots, Z_n', \hat{v}_1, \dots, v_0, \dots, \hat{v}_n) - sw_{-i}(Z_1^*, \dots, Z_n^*, \hat{v}_1, \dots, \hat{v}_i, \dots, \hat{v}_n), \text{ where}$$

$$Z_1', \dots, Z_n' = \underset{(Z_1, \dots, Z_n) \in \text{alloc}(\mathcal{Z}, Ag)}{\text{arg max}} sw(Z_1, \dots, Z_n, \hat{v}_1, \dots, \hat{v}^0, \dots, \hat{v}_n)$$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Friedhaultrige)gent Systems

VCG mechanism III

Properties of the VCG mechanism:

- ▶ VCG mechanism is incentive compatible, i.e. telling the truth is dominant strategy
- ► For a single goos VCG mechanism reduces to Vickrey mechanism $\Rightarrow p_i$ would be the amount of second highest valuation
- Computing VCG payments p_i is NP-hard

VCG mechanism shows that

⇒ social welfare maximization can be implemented in dominant strategies in combinatorial auctions!

12.4 Summary

■ Thanks

Summary

What we have learned today:

- Different auction types, protocols, and properties thereof
 - English, Dutch, First-price sealed-bid, and Vickrey auction
 - open cry versus sealed-bid, ascending versus descending
 - honesty & collusion
- Combinatorial auctions
 - valuation functions & their properties
 - maximization of social welfare
 - Bidding languages
 - Winner determination
 - The VCG mechanism

Next: Bargaining

Acknowledgments

These lecture slides are (partly) based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- ► Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley & Sons, 2nd edition 2009.