11.1 Motivation

What we've learned so far

Last time we learned about:

▶ Coalition formation
▶ The core of a coalition game
▶ The Shapley value
▶ Different representations for different types of games
 ▶ General coalition games: induced subgraphs & marginal contribution nets
 ▶ Simple games: \((k-)\)-weighted voting games
▶ The Shapley-Shubik power index of simple games

Today:
Coalition Games with Goals & Coalition Structure Formation
So far, utility in coalition games was represented as some numeric value:

\[\nu : 2^{2^{|\mathcal{G}|}} \rightarrow \mathbb{R} \]

In BDI systems (such as Jason) this is inappropriate. System designers want their agents to achieve some goal(s).

⇒ Qualitative coalition games (QCG)

- Each agent has set of goals and wants one of them to be achieved, but does not care which one
- Agents cooperate to achieve mutually satisfying sets of goals

Qualitative coalition games

Formal model:
- every coalition C has a set of choices \(V(C) \), i.e. different ways the coalition C could choose to cooperate
- characteristic function of QCG has signature \(V : 2^{2^{|\mathcal{G}|}} \rightarrow 2^{2^{|\mathcal{G}|}} \)

Suppose set of goals \(G' \subseteq G \) is achieved:
- \(G' \) satisfies an agent \(i \) if \(G_i \cap G' \neq \emptyset \), i.e. at least one of its goals is achieved
- \(G' \) is feasible for a coalition \(C \), if \(G' \in V(C) \), i.e. \(G' \) is one of the choices available to \(C \)
- Coalition \(C \) is successful, if \(C \) can cooperate in such a way that \(G' \) satisfies every member of \(C \)

Propositional logic representation is complete, but not guaranteed to be succinct.

Coalition resource game

QCGs say nothing about where the characteristic function comes from, or how it is derived for a given scenario.

⇒ The coalition resource game framework (Wooldridge & Dunne, 2006):

- Simple idea: To achieve a goal requires consumption of resources and each agent is endowed with a profile of resources
- Coalitions form to pool resources and achieve mutually satisfactory set of goals

Interesting questions:
- Theoretical: Can a pair of coalitions achieve their goals whilst staying within their respective resource bounds?
- Real world: Can some countries achieve their economic objectives without consuming too many pollution-producing resources?
11.3 Coalition Structure Formation

So far, every agent acts strategically just as in non-cooperative games, attempting maximization of own utility.

⇒ What if one designer owns all agents?

▶ Performance of single agents perhaps not as important
▶ Better maximize social welfare of the system
▶ Maximizing social welfare ⇒ maximizing the sum of the values of individual coalitions

A coalition structure is a partition of the overall set of agents Ag into mutually disjoint coalitions.

Example, with $Ag = \{1, 2, 3\}$:

- Seven possible coalitions:
 \[
 \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}, \{1, 2, 3\}
 \]

- Five possible coalition structures:
 \[
 \{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{2\}, \{1, 3\}\},
 \{\{3\}, \{1, 2\}\}, \{\{1, 2, 3\}\}
 \]

Given game $G = (Ag, \nu)$, the socially optimal coalition structure CS^* is defined as:

\[
CS^* = \arg \max_{CS \in \text{partitions of } Ag} V(CS)
\]

where

\[
V(CS) = \sum_{C \in CS} \nu(C)
\]

Unfortunately, there are exponentially more coalition structures over the sets of agents Ag then there will be coalitions over Ag

⇒ Exhaustive search is infeasible (in the worst case!)

Sandholm et al. (1999) developed a technique that guarantees to find a coalition structure that is within some provable bound from the optimal one.
11.4 Summary

- Thanks

Summary

What we have learned today:
- Coalition Games with Goals
 - Goals, not numeric utilities, as targets for agents
 - Qualitative coalition games
 - Coalition resource game
- Coalition Structure Formation
 - Maximizing social welfare, instead of individual agent’s utility
 - Number of coalition structures exponential in the number of coalitions

Next (on Wednesday): Allocating Scarce Resources

Acknowledgments

These lecture slides are based on the following resources: