Multiagent Systems
 10. Coalition Formation

B. Nebel, C. Becker-Asano, S. Wölf|
Albert-Ludwigs-Universität Freiburg

July 2, 2014

Multiagent Systems
July 2, 2014 - 10. Coalition Formation

10.1 Motivation

10.2 Terminology

10.3 Basics

10.4 Shapley value
10.5 Representation
10.6 Summary

10.1 Motivation

Motivation

Remember the prisoner's dilemma with the following payoff matrix:

\[

\]

In games like this one cooperation is prevented, because:

- Binding agreements are not possible
- Utility is given directly to individuals as the result of individual action How about real world situations?

Prisoner's dilemma \& the real world

Theoretical problems:

- Binding agreements are not possible
- Utility is given directly to individuals as the result of individual action Real world situation:
- Contracts can form binding agreements
- Utility is given to organizations/groups of people and not to individuals
Under these circumstances cooperation becomes both possible and rational. \Rightarrow Cooperative game theory asks which contracts are meaningful solutions among self-interested agents.

Terminology

10.2 Terminology

Terminology

Setting:

- $A g=\{1, \ldots, n\}$ agents (finite, typically $n>2$)
- Any subset C of $A g$ is called a coalition
- $C=A g$ is the grand coalition
- A cooperative game is a pair $\mathcal{G}=\langle A g, \nu\rangle$
- $\nu: \mathbf{2}^{A g} \rightarrow \mathbb{R}$ is the characteristic function of the game
- $\nu(C)$ is the maximum utility C can achieve, regardless of the remaining agents' behaviors (outside of coalition C)
- A coalition with only one agent is a singleton coalition

Finally: individual actions, utilities, and the origin of ν do not matter, i.e. they are assumed to be given.

Example:

- A game with $A g=\{1,2\}$
- Singleton coalitions $\nu(\{1\})=5$ and $\nu(\{2\})=5$
- Grand coalition $\nu(\{1,2\})=20$

Terminology II

A simple coalition game:

- value of any coalition is either 0 ('loosing') or 1 ('winning')
- voting systems can be understood in terms of simple games

General questions now:

1. Which coalitions might be formed by rational agents?
2. How should payoff be reasonably divided between members of a coalition?
\Rightarrow Just as non-cooperative games had solution concepts (Nash-equilibria,
...), cooperative games have theirs as well (Shapley value, ...).

10.3 Basics

Three Stages of Cooperative Action

The cooperation lifecycle (Sandholm et al., 1999):

- Coalition structure generation:
- Asking which coalitions will form, concerned with stability
- For example, a productive agent has the incentive to defect from a coalition with a lazy agent
- Necessary but not sufficient condition for establishment of a coalition
- Solving the optimization problem of each coalition:
- Decide on collective plans
- Maximize the collective utility of the coalition
- Dividing the value of the solution of each coalition:
- Concerned with fairness of contract
- How much an agent should receive based on her contribution

Outcome and Objections

Question: Which coalitions are stable?

- An outcome $x=\left\langle x_{1}, \ldots, x_{k}\right\rangle$ for a coalition C in game $\langle A g, \nu\rangle$ is a distribution of C 's utility to members of C
- Outcomes must be feasible (don't overspend) and efficient don't underspend) $\Rightarrow \sum_{i \in C} x_{i}=\nu(C)$
- Example:
- $A g=\{1,2\}, \nu(\{1\})=5, \nu(\{2\})=5$, and $\nu(\{1,2\})=20$
- Possible outcomes for $C_{\text {grand }}=\{1,2\}$ are $\langle 20,0\rangle,\langle 19,1\rangle, \ldots,\langle 1,19\rangle$, $\langle 0,20\rangle$
- C (e.g. a singleton coalition) objects to an outcome of a grand coalition (e.g. $\langle 1,19\rangle$), if there is some outcome for C (e.g. $\nu(\{1\})=5$) in which all members of C are strictly better off

Formally: $C \subseteq A g$ object to $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for the grand coalition, iff there exists some outcome $x^{\prime}=\left\langle x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\rangle$ for C, such that $x_{i}^{\prime}>x_{i}$ for all $i \in C$

The core

Answering the question "Is the grand coalition stable?" is the same as asking:
Is the core non-empty?

The core
The core of a coalition game is the set of outcomes for the grand coalition to which nobody has an objection.
Non-empty core \Rightarrow there exists some way that the grand coalition can cooperate and distribute the resulting utility such that no (sub-)coalition could do better by defecting.

Previous example?
Core contains all outcomes between $\langle 15,5\rangle$ and $\langle 5,15\rangle$ inclusive

Despite the usefulness of the concept of the core, some problems arise:

- Sometimes the core is empty and to detect this all possible coalitions need to be enumerated \Rightarrow with n agents, 2^{n-1} subsets / coalitions need to be checked!
- Fairness is not considered, e.g. $\langle 5,15\rangle \in$ core, but all surplus goes to one agent alone
Solution to second problem is considered next.

10.4 Shapley value

Shapley value (preliminaries)

Idea: To eliminate unfair outcomes, try to divide surplus according to each agent's contribution

Define marginal contribution of i to C :
Marginal contribution
The marginal contribution $\mu_{i}(C)$ of agent i to coalition C is defined as: $\mu_{i}(C)=\nu(C \cup\{i\})-\nu(C)$
Axioms any fair distribution should satisfy:

- Symmetry: if two agents contribute the same, then they should receive same payoff (they are interchangeable)
- Dummy player: agents not adding any value to any coalition should receive what they earn on their own
- Additivity: if two games are combined, then the value a player gets should equal the sum of the values it receives in the individual games

Shapley value

Shapley value
The Shapley value $s h_{i}$ for agent i is defined as:

$$
s h_{i}=\frac{1}{|A g|!} \sum_{o \in \Pi(A g)} \mu_{i}\left(C_{i}(o)\right)
$$

- $\Pi(A g)$ denotes the set of all possible orderings, i.e. permutations, for example, with $A g=\{1,2,3\}$:
$\Pi(A g)=\{(1,2,3),(1,3,2),(2,1,3), \ldots\})$
- $C_{i}(o)$ denotes the set containing only those agents that appear before agent i in o, for example, with $o=\{3,1,2): C_{3}(o)=\emptyset$ and $C_{2}(o)=\{1,3\}$
- Requires that $\nu(\emptyset)=0$ and $\nu\left(C \cup C^{\prime}\right) \geq \nu(C)+\nu\left(C^{\prime}\right)$ if $C \cap C^{\prime}=\emptyset$ (i.e. ν must be superadditive)

Shapley value: examples

Examples for calculations of the Shapley value:

1. Consider $\nu(\{1\})=5, \nu(\{2\})=5$, and $\nu(\{1,2\})=20$:

- Intuition says to allocate 10 to each agent
- $\mu_{1}(\emptyset)=5, \mu_{2}(\emptyset)=5, \mu_{1}(\{2\})=15, \mu_{2}(\{1\})=15$ $\Rightarrow s h_{1}=s h_{2}=(5+15) / 2=10$ (same as intuition)

2. Consider $\nu(\{1\})=5, \nu(\{2\})=10$, and $\nu(\{1,2\})=20$:

- $\mu_{1}(\emptyset)=5, \mu_{2}(\emptyset)=10, \mu_{1}(\{2\})=\nu(\{1,2\})-\nu(\{2\})=20-10=10$,
$\mu_{2}(\{1\})=20-5=15$
$\Rightarrow s h_{1}=(5+10) / 2=7.5, s h_{2}=(10+15) / 2=12.5$
- Agent 2 contributes more than agent 1 \Rightarrow receives higher payoff!

Shapley value: a dummy player example

Finally, consider $A g=\{1,2,3\}$, with $\nu(\{1\})=5, \nu(\{2\})=5, \nu(\{3\})=5$, $\nu(\{1,2\})=10, \nu(\{1,3\})=10, \nu(\{2,3\})=20$, and $\nu(\{1,2,3\})=25$:

- We have $\mu_{1}(\emptyset)=5, \mu_{2}(\emptyset)=5, \mu_{3}(\emptyset)=5, \mu_{1}(\{2\})=5, \mu_{1}(\{3\})=5$, $\mu_{1}(\{2,3\})=5, \mu_{2}(\{1\})=5, \mu_{2}(\{3\})=15, \mu_{2}(\{1,3\})=15$, $\mu_{3}(\{2\})=15, \mu_{3}(\{1,2\})=15$.
- Agent 1 is a dummy player and its share should be $s h_{1}=5$ (dummy player axiom)
- $s h_{2}=(5+5+15+15) / 4=10$ and similarly $s h_{3}=10$.

Important: The Shapley value is the only value that satisfies the fairness axioms

10.5 Representation

- Induced subgraphs
- Marginal Contribution Nets
- Simple games

Computational and representational issues

Consider a naïve representation of a coalition game:

```
1, 2, 3
1 = 5
2 = 5
3 = 5
1, 2 = 10
1, 3 = 10
2, 3 = 20
1, 2, 3 = 25
```

This is infeasible, because it is exponential in the size of $A g$!
\Rightarrow succinct representation needed:

- Modular representations exploit Shapley's axioms directly
- Basic idea: divide the game into smaller games and exploit additivity axiom

Modular representations

Two modular representations will be discussed:

1. Induced subgraphs: a succinct, but incomplete representation
2. Marginal contribution nets: generalization of induced subgraphs, complete, but in worst case not succinct

Induced subgraphs

Idea: define characteristic function $\nu(C)$ by an undirected weighted graph

- Value of a coalition $C \subseteq A g: \nu(C)=\sum_{\{i, j\} \subseteq C} w_{i, j}$

Example:

$$
\begin{aligned}
\nu(\{A, B, C\}) & =3+2=5 \\
\nu(\{D\}) & =5 \\
\nu(\{B, D\}) & =1+5=6 \\
\nu(\{A, C\}) & =2
\end{aligned}
$$

- Not a complete representation
- But easy to compute the Shapley value for a given player in polynomial time: $s h_{i}=\frac{1}{2} \sum_{j \neq i} w_{i, j}$
\Rightarrow Checking emptiness of the core is NP-complete, and membership to the core is co-NP-complete

Marginal Contribution Nets I

Idea: represent characteristic function as a set of rules

$$
\text { pattern } \rightarrow \text { value }
$$

1. Structure of the rules:

- pattern is conjunction of agents, e.g. $1 \wedge 3$
- $1 \wedge 3$ would apply to $\{1,3\}$ and $\{1,3,5\}$, but not to $\{1\}$ or $\{8,12\}$
- $C \models \phi$: the rule $\phi \rightarrow x$ applies to coalition C
- $r s_{C}=\{\phi \rightarrow x \in r s \mid C \models \phi\}$: the rules that apply to C

2. The characteristic function associated with the ruleset $r s$:

$$
\nu_{r s}(C)=\sum_{\phi \rightarrow x \in r s C} x
$$

Marginal Contribution Nets II

Example:

- $r s_{1}=\{a \wedge b \rightarrow 5, b \rightarrow 2\}$
- $\left.\nu_{r s_{1}}(\{a\})=0, \nu_{r s_{1}}(\{b\})\right)=2$, and $\left.\nu_{r s_{1}}(\{a, b\})\right)=7$

Extension:

- Allow negation in rules indicating the absence of agents instead of their presence
- Example: with $r s_{2}=\{a \wedge b \rightarrow 5, b \rightarrow 2, c \rightarrow 4, b \wedge \neg c \rightarrow-2\}$ we have $\nu_{r s_{2}}(\{b\})=0$ (2nd and 4th rule), and $\nu_{r s_{2}}(\{b, c\})=6$ (2nd and 3rd rule)
General properties:
- Shapley value can be computed in polynomial time
- Complete representation, but not necessarily succinct

Representations for Simple Games

Remember: A coalition game is simple, if the value of any coalition is either zero (losing) or one (winning).

- Simple games model yes/no voting systems
- $Y=\langle A g, W\rangle$, where $W \subseteq 2^{A g}$ is the set of winning coalitions
- If $C \in W$, coalition C would be able to determine the outcome, 'yes' or 'no'

Important conditions:

- Non-triviality: $\emptyset \subset W \subset \mathbf{2}^{\text {Ag }}$
- Monotonicity: if $C_{1} \subseteq C_{2}$ and $C_{1} \in W$ then $C_{2} \in W$
- Zero-sum: if $C \in W$ then $A g \backslash C \notin W$
- Empty coalition loses: $\emptyset \notin W$
- Grand coalition wins: $A g \in W$

Important: Naïve representation is exponential in the number of agents

Weighted Voting Games

Weighted voting games are an extension of simple games:

- For each agent $i \in A g$ define a weight w_{i}
- Define an overall quota q
- A coalition is winning if the sum of their weights exceeds the quota:

$$
\nu(C)= \begin{cases}1 & \text { if } \sum_{i \in C} w_{i} \geq q \\ 0 & \text { otherwise }\end{cases}
$$

Example: Simple majority voting, $w_{i}=1$ and $q=\frac{\lceil|A g|+1\rceil}{2}$

- Succinct (but incomplete) representation: $\left\langle q ; w_{1}, \ldots, w_{n}\right\rangle$

Shapley-Shubic power index

The Shapley-Shubic power in index is the Shapley value in yes/no games:

- Measures the power of the voter in this case
- Computation is NP-hard, no reasonable polynomial time approximation
- Checking emptiness of the core can be done in polynomial time (veto player)
It has counter-intuitive properties:
- In the weighted voting game $\langle 100 ; 99,99,1\rangle$ all three voters have the same power $\left(\frac{1}{3}\right)$
- Player with non-zero weight might nevertheless have no power, e.g., in $\langle 10 ; 6,4,2\rangle$ third player is a dummy player
- But, by adding one player $\langle 10 ; 6,4,2,8\rangle$ third player's power increases

k-weighted Voting Games

Extension of weighted voting games:
$\Rightarrow \mathrm{k}$-weighted voting games

- complete representation (in contrast to weighted voting games)
- overall game: "conjunction" k of k different weighted voting games
- Winning coalition: the one that wins in all component games Relation to simple coalition games (Wooldridge, p. 285):
"Every simple game can be represented by a k-weighted voting game in which k is at most exponential in the number of players."

Real world relevance: the voting system of the enlarged European Union is a three-weighted voting game

10.6 Summary

- Thanks

Summary

What we have learned today:

- Coalition formation
- The core of a coalition game
- The Shapley value
- Different representations for different types of games
- General coalition games: induced subgraphs \& marginal contribution nets
- Simple games: (k-)weighted voting games
- The Shapley-Shubic power index of simple games

Next (on Friday!):
Coalition Games with Goals \& Coalition Structure Formation

Acknowledgments

These lecture slides are based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley \& Sons, 2nd edition 2009.

