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Making group decisions

Previously we looked at agents acting strategically
Outcome in normal-form games follows immediately from
agents’ choices
Often a mechanism for deriving group decision is present
What rules are appropriate to determine the joint decision
given individual choices?
Social Choice Theory is concerned with group decision
making (basically analysis of mechanisms for voting)
Basic setting:
Agents have preferences over outcomes
Agents vote to bring about their most preferred outcome

3 / 28
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Preference aggregation

Setting:
Ag = {1, . . . , n}: voters (finite, odd number)
Ω = {ω1, ω2, . . . }: possible outcomes or candidates
Π(Ω): set of all (strict) preference orderings over Ω

�i ∈ Π(Ω): preference ordering of agent i

Preference aggregation
How do we combine a collection of potentially different
preference orders in order to derive a group decision?
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Preference aggregation

Task is either to derive a globally acceptable preference
ordering, or determine a winner:

Social welfare/choice functions

Social welfare function: a function that assigns to n
preference relations (one for each agent) a preference
relation, i.e.:

F : Π(Ω)× · · · ×Π(Ω)→ Π(Ω)

Social choice function: a function that assigns to n
preference relations (one for each agent) a candidate, i.e.:

f : Π(Ω)× · · · ×Π(Ω)→ Ω
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Plurality voting

Voters submit preference orders
The candidate that appears first in most preference orders
wins
Only submission of the highest ranked candidate is required
Simple majority voting when |Ω| = 2

Advantages: simple to implement and easy to understand

Problems:
Tactical voting
Strategic manipulation
Condorcet’s paradox
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Plurality voting: An example

Outcomes: Ω = {S,G,C}
Assume 1000 voters with the following preference relations:

Ranking
# Voters 1 2 3

417 S G C
142 G S C
441 C G S

Plurality voting: C wins with 44% of the votes.
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Anomalies with Plurality

Despite not securing majority, C wins with 44%

Even worse: C is the least preferred option for 56% of
voters
Tactical voting: The voters with G � S � C may do
better by voting for S instead of their actual preference G

But is lying bad? Not in principle, but it favours
computationally stronger voters, and wastes computational
resources
Strategic nomination: manipulate the voting result
through the candidate set
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Condorcet’s Paradox

Outcomes: Ω = {A,B,C}
3 voters with the following preference orders:

A �1 B �1 C,

C �2 A �2 B; and
B �3 C �3 A

With plurality voting, no decision (a tie)

Condorcet’s Paradox: The social preference is not
transitive though all individual preference orderings are
transitive

In the example: A is (more often) preferred to B and B is
preferred to C, but A is not preferred to C

This means: There are scenarios in which no matter which
outcome we choose the majority of voters will be unhappy
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Plurality voting with runoff

First round: two candidates with the most top highest
ranked votes are selected unless one candidate receives
absolute majority
Second round: runoff

In the plurality voting example: candidates S and C go to the
runoff-round. Given all voters stick to their preferences, S wins
over C.
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Sequential majority elections

Instead of one-step protocol, voting can be done in several
steps
Candidates face each other in pairwise elections, the
winner progresses to the next election
Election agenda is the ordering of these elections
Can be organized as a binary voting tree:

?

?

?

ω1 ω4

ω3

ω2

?

?

ω1 ω4

?

ω3 ω2

Key problem: the final outcome depends on the election
agenda
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Majority graphs

Introduce majority graph as tool for discussing sequential
voting: provides a succinct representation of voter
preferences
Nodes correspond to outcomes, e.g., ω1, ω2, . . .

There is an arc from ω to ω′ whenever a majority of voters
rank ω above ω′

Examples:

ω1 ω2

ω3

ω1 ω2

ω3 ω4

ω1 ω2

ω3 ω4
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Majority graphs

Tournament: complete, asymmetric and irreflexive
majority graph (produced with odd number of voters)
Possible winner: There is an agenda in which the
candidate wins
E.g.: every candidate in (a) and (b)
Condorcet winner: overall winner for every possible
agenda
E.g.: candidate ω1 in (c)
Strategic manipulation: fixing the election agenda

ω1 ω2

ω3

ω1 ω2

ω3 ω4

ω1 ω2

ω3 ω4

(a) (b) (c) 14 / 28
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The Borda Count

In simple mechanisms above, only top-ranked candidate
taken into account, rest of orderings disregarded
Borda count looks at entire preference ordering, counts
the strength of opinion in favour of a candidate
For all preference orders and outcomes (|Ω| = m), if ωi

has rank k in a preference ordering, ωi gets m− k points.
Then up sum all points. Candidate with most points wins.

Voting example:
417 voters with S � G � C; 142 voters with G � S � C,
and 441 voters with C � G � S.
Borda counts:
S: 417 · (3− 1) + 142 · (3− 2) + 441 · (3− 3) = 834 + 142 = 976
G: 417 · (3− 2)+142 · (3− 1)+441 · (3− 2) = 417+284+441 = 942
C: 417 · (3− 3) + 142 · (3− 3) + 441 · (3− 1) = 882

15 / 28



Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wölfl

Motivation

Preference
Aggregation

Arrow’s
Theorem

Gibbard-
Satterthwaite
Theorem

Summary

The Borda Count

In simple mechanisms above, only top-ranked candidate
taken into account, rest of orderings disregarded
Borda count looks at entire preference ordering, counts
the strength of opinion in favour of a candidate
For all preference orders and outcomes (|Ω| = m), if ωi

has rank k in a preference ordering, ωi gets m− k points.
Then up sum all points. Candidate with most points wins.

Voting example:
417 voters with S � G � C; 142 voters with G � S � C,
and 441 voters with C � G � S.
Borda counts:
S: 417 · (3− 1) + 142 · (3− 2) + 441 · (3− 3) = 834 + 142 = 976
G: 417 · (3− 2)+142 · (3− 1)+441 · (3− 2) = 417+284+441 = 942
C: 417 · (3− 3) + 142 · (3− 3) + 441 · (3− 1) = 882

15 / 28



Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wölfl

Motivation

Preference
Aggregation

Arrow’s
Theorem

Gibbard-
Satterthwaite
Theorem

Summary

The Slater Ranking

Idea: how can we minimize disagreement between the
majority graph and the social choice?
For each possible ordering measure the degree of
disagreement with the majority graph
Degree of disagreement: number of edges that need to be
flipped
NP-hard to compute

Example:

ω1 ω2

ω3 ω4

Consider:
ω1 �∗ ω2 �∗ ω4 �∗ ω3

Cost is 2, we have to flip the edges
(ω3, ω4) and (ω4, ω1)

ω1 �∗ ω2 �∗ ω3 �∗ ω4

Cost is 1, we have to flip the edge
(ω4, ω1); this is the ordering with
the lowest disagreement

16 / 28
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Desirable properties (I)

Pareto condition/Partial unanimity:
If every voter ranks ωi above ωj , then ωi �∗ ωj

. . . satisfied by plurality and Borda, but not by sequential
majority

Condorcet winner condition:
The outcome would beat every other outcome in a pairwise
election
. . . satisfied only by sequential majority elections

18 / 28
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Desirable properties (II)

Independence of irrelevant alternatives (IIA):
The social ranking of two outcomes ωi and ωj should
depend only on their relevant ordering in the voters’
preference orders (and not on the ordering of other
outcomes)
. . . Plurality, Borda and sequential majority elections do
not satisfy IIA

Non-Dictatorship: A social welfare function F is a
dictatorship if there exists a voter i such that

F (�1, . . . ,�n) = �i

for all orderings �1, . . . ,�n.
. . . Dictatorships satisfy Pareto condition and IIA

19 / 28
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Arrow’s Theorem

Overall vision in social choice theory: identify “good” social
choice procedures
Unfortunately, a fundamental theoretical result gets in the
way

Arrow’s Impossibility Theorem
In situations with more than two possible outcomes, every social
welfare function satisfying unanimity and independence of
irrelevant alternatives must be a dictatorship.

20 / 28
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Arrow’s Theorem

Disappointing, basically means we can never achieve
combination of good properties without dictatorship
. . . in other words, there exists no social welfare function
that satisfies (partial) unanimity, IIA, and non-dictatorship
at the same time (in situations with more than two
alternatives)
Most social welfare functions satisfy unanimity and
non-dictatorship, i.e., the problem is usually IIA
This is related to strategic voting: add irrelevant
candidates . . .

21 / 28
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Strategic Manipulation

As stated above, while lying could be allowed as part of
rational behaviour, it is unfair and wasteful
Can we design voting procedures that are immune to
manipulation?

Incentive compatibility
A social choice function f is manipulable by voter i if for some
collection of preference profiles �1, . . . ,�n there exists �′i such
that

f(�1, . . . ,�′i, . . . ,�n) �i f(�1, . . . ,�i, . . . ,�n)

f is incentive-compatible if f can never be manipulated by
any voter.

23 / 28
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Gibbard-Satterthwaite Theorem

Dictatorship
f is a dictatorship if there exists a voter i such that for all
preference profiles �1, . . . ,�n, f(�1, . . . ,�n) is the unique
candidate that is most preferred w.r.t. �i.

The Gibbard-Satterthwaite Theorem is an analogous result to
Arrow’s Impossibility Theorem: social choice functions instead
of social welfare functions
Surjective social choice function: one that does not exclude ex
ante any possible outcome.

Gibbard-Satterthwaite Theorem
In situations with more than two outcomes, the only
incentive-compatible and surjective social choice functions are
dictatorships.
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Complexity of manipulation

So we have another negative result: strategic manipulation
is possible in principle in all desirable mechanisms
But how easy is it to manipulate effectively?
Distinction between being easy to compute and easy to
manipulate
Mechanisms can be designed for which manipulation is very
computationally complex (but often only in the worst case)
Are there non-dictactorial voting procedures that are easy
to compute but not easy to manipulate?
Yes, for example second-order Copeland

25 / 28
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Discussed procedures for making group decisions
Plurality, Sequential Majority Elections, Borda Count,
Slater Ranking
Desirable properties
Dictatorships
Strategic manipulation and computational complexity
Next time: Coalition Formation
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