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Motivation

Making group decisions

I Previously we looked at agents acting strategically
I Outcome in normal-form games follows immediately from agents’

choices
I Often a mechanism for deriving group decision is present
I What rules are appropriate to determine the joint decision given

individual choices?
I Social Choice Theory is concerned with group decision making

(basically analysis of mechanisms for voting)
I Basic setting:

Agents have preferences over outcomes
Agents vote to bring about their most preferred outcome
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Preference Aggregation
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Preference Aggregation

Preference aggregation

Setting:
I Ag = {1, . . . , n}: voters (finite, odd number)
I Ω = {ω1, ω2, . . . }: possible outcomes or candidates
I Π(Ω): set of all (strict) preference orderings over Ω

I �i ∈ Π(Ω): preference ordering of agent i

Preference aggregation
How do we combine a collection of potentially different preference orders in
order to derive a group decision?
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Preference Aggregation

Preference aggregation

Task is either to derive a globally acceptable preference ordering, or
determine a winner:

Social welfare/choice functions

I Social welfare function: a function that assigns to n preference
relations (one for each agent) a preference relation, i.e.:

F : Π(Ω)× · · · × Π(Ω)→ Π(Ω)

I Social choice function: a function that assigns to n preference
relations (one for each agent) a candidate, i.e.:

f : Π(Ω)× · · · × Π(Ω)→ Ω
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Preference Aggregation

Plurality voting

I Voters submit preference orders
I The candidate that appears first in most preference orders wins
I Only submission of the highest ranked candidate is required
I Simple majority voting when |Ω| = 2

Advantages: simple to implement and easy to understand

Problems:
I Tactical voting
I Strategic manipulation
I Condorcet’s paradox
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Preference Aggregation

Plurality voting: An example

I Outcomes: Ω = {S ,G ,C}
I Assume 1000 voters with the following preference relations:

Ranking
# Voters 1 2 3

417 S G C
142 G S C
441 C G S

I Plurality voting: C wins with 44% of the votes.
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Preference Aggregation

Anomalies with Plurality

I Despite not securing majority, C wins with 44%

I Even worse: C is the least preferred option for 56% of voters
I Tactical voting: The voters with G � S � C may do better by

voting for S instead of their actual preference G

I But is lying bad? Not in principle, but it favours computationally
stronger voters, and wastes computational resources

I Strategic nomination: manipulate the voting result through the
candidate set
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Preference Aggregation

Condorcet’s Paradox
I Outcomes: Ω = {A,B,C}
I 3 voters with the following preference orders:

A �1 B �1 C ,

C �2 A �2 B; and
B �3 C �3 A

I With plurality voting, no decision (a tie)

I Condorcet’s Paradox: The social preference is not transitive
though all individual preference orderings are transitive

I In the example: A is (more often) preferred to B and B is preferred to
C , but A is not preferred to C

I This means: There are scenarios in which no matter which outcome
we choose the majority of voters will be unhappy
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Preference Aggregation

Plurality voting with runoff

I First round: two candidates with the most top highest ranked votes
are selected unless one candidate receives absolute majority

I Second round: runoff

In the plurality voting example: candidates S and C go to the
runoff-round. Given all voters stick to their preferences, S wins over C .
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Preference Aggregation

Sequential majority elections

I Instead of one-step protocol, voting can be done in several steps
I Candidates face each other in pairwise elections, the winner

progresses to the next election
I Election agenda is the ordering of these elections
I Can be organized as a binary voting tree:

?

?

?

ω1 ω4

ω3

ω2

?

?

ω1 ω4

?

ω3 ω2

I Key problem: the final outcome depends on the election agenda
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Preference Aggregation

Majority graphs

I Introduce majority graph as tool for discussing sequential voting:
provides a succinct representation of voter preferences

I Nodes correspond to outcomes, e.g., ω1, ω2, . . .

I There is an arc from ω to ω′ whenever a majority of voters rank ω
above ω′

Examples:

ω1 ω2

ω3

ω1 ω2

ω3 ω4

ω1 ω2

ω3 ω4
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Preference Aggregation

Majority graphs
I Tournament: complete, asymmetric and irreflexive majority graph

(produced with odd number of voters)
I Possible winner: There is an agenda in which the candidate wins

E.g.: every candidate in (a) and (b)
I Condorcet winner: overall winner for every possible agenda

E.g.: candidate ω1 in (c)
I Strategic manipulation: fixing the election agenda

ω1 ω2

ω3

ω1 ω2

ω3 ω4

ω1 ω2

ω3 ω4

(a) (b) (c)
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Preference Aggregation

The Borda Count

I In simple mechanisms above, only top-ranked candidate taken into
account, rest of orderings disregarded

I Borda count looks at entire preference ordering, counts the strength
of opinion in favour of a candidate

I For all preference orders and outcomes (|Ω| = m), if ωi has rank k in
a preference ordering, ωi gets m − k points. Then up sum all points.
Candidate with most points wins.

Voting example:
I 417 voters with S � G � C ; 142 voters with G � S � C , and 441

voters with C � G � S .
I Borda counts:

S: 417 · (3− 1) + 142 · (3− 2) + 441 · (3− 3) = 834+ 142 = 976
G: 417 · (3− 2) + 142 · (3− 1) + 441 · (3− 2) = 417+ 284+ 441 = 942
C: 417 · (3− 3) + 142 · (3− 3) + 441 · (3− 1) = 882
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Preference Aggregation

The Slater Ranking

I Idea: how can we minimize disagreement between the majority graph
and the social choice?

I For each possible ordering measure the degree of disagreement with
the majority graph

I Degree of disagreement: number of edges that need to be flipped
I NP-hard to compute

Example:

ω1 ω2

ω3 ω4

Consider:
I ω1 �∗ ω2 �∗ ω4 �∗ ω3

Cost is 2, we have to flip the edges
(ω3, ω4) and (ω4, ω1)

I ω1 �∗ ω2 �∗ ω3 �∗ ω4
Cost is 1, we have to flip the edge
(ω4, ω1); this is the ordering with
the lowest disagreement
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Arrow’s Theorem

9.3 Arrow’s Theorem
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Arrow’s Theorem

Desirable properties (I)

I Pareto condition/Partial unanimity:
If every voter ranks ωi above ωj , then ωi �∗ ωj

. . . satisfied by plurality and Borda, but not by sequential majority

I Condorcet winner condition:
The outcome would beat every other outcome in a pairwise election
. . . satisfied only by sequential majority elections
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Arrow’s Theorem

Desirable properties (II)

I Independence of irrelevant alternatives (IIA):
The social ranking of two outcomes ωi and ωj should depend only on
their relevant ordering in the voters’ preference orders (and not on the
ordering of other outcomes)
. . . Plurality, Borda and sequential majority elections do not satisfy IIA

I Non-Dictatorship: A social welfare function F is a dictatorship if
there exists a voter i such that

F (�1, . . . ,�n) = �i

for all orderings �1, . . . ,�n.
. . . Dictatorships satisfy Pareto condition and IIA
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Arrow’s Theorem

Arrow’s Theorem

I Overall vision in social choice theory: identify “good” social choice
procedures

I Unfortunately, a fundamental theoretical result gets in the way

Arrow’s Impossibility Theorem
In situations with more than two possible outcomes, every social welfare
function satisfying unanimity and independence of irrelevant alternatives
must be a dictatorship.
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Arrow’s Theorem

Arrow’s Theorem

I Disappointing, basically means we can never achieve combination of
good properties without dictatorship

I . . . in other words, there exists no social welfare function that satisfies
(partial) unanimity, IIA, and non-dictatorship at the same time (in
situations with more than two alternatives)

I Most social welfare functions satisfy unanimity and non-dictatorship,
i.e., the problem is usually IIA

I This is related to strategic voting: add irrelevant candidates . . .
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Gibbard-Satterthwaite Theorem

9.4 Gibbard-Satterthwaite Theorem
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Gibbard-Satterthwaite Theorem

Strategic Manipulation

I As stated above, while lying could be allowed as part of rational
behaviour, it is unfair and wasteful

I Can we design voting procedures that are immune to manipulation?

Incentive compatibility
A social choice function f is manipulable by voter i if for some collection
of preference profiles �1, . . . ,�n there exists �′i such that

f (�1, . . . ,�′i , . . . ,�n) �i f (�1, . . . ,�i , . . . ,�n)

f is incentive-compatible if f can never be manipulated by any voter.
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Gibbard-Satterthwaite Theorem

Gibbard-Satterthwaite Theorem

Dictatorship
f is a dictatorship if there exists a voter i such that for all preference
profiles �1, . . . ,�n, f (�1, . . . ,�n) is the unique candidate that is most
preferred w.r.t. �i .

The Gibbard-Satterthwaite Theorem is an analogous result to Arrow’s
Impossibility Theorem: social choice functions instead of social welfare
functions
Surjective social choice function: one that does not exclude ex ante any
possible outcome.

Gibbard-Satterthwaite Theorem
In situations with more than two outcomes, the only incentive-compatible
and surjective social choice functions are dictatorships.
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Gibbard-Satterthwaite Theorem

Complexity of manipulation

I So we have another negative result: strategic manipulation is possible
in principle in all desirable mechanisms

I But how easy is it to manipulate effectively?
I Distinction between being easy to compute and easy to manipulate
I Mechanisms can be designed for which manipulation is very

computationally complex (but often only in the worst case)
I Are there non-dictactorial voting procedures that are easy to compute

but not easy to manipulate?
I Yes, for example second-order Copeland
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Summary

9.5 Summary

Thanks

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Freiburg)Multiagent Systems June 25, 2014 26 / 28

Summary

Summary

I Discussed procedures for making group decisions
I Plurality, Sequential Majority Elections, Borda Count, Slater Ranking
I Desirable properties
I Dictatorships
I Strategic manipulation and computational complexity
I Next time: Coalition Formation
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