3.1 Background

Practical Reasoning

- Practical Reasoning
- Intentions
- Desires

Practical Reasoning is reasoning directed towards actions, i.e. deciding what to do.

Principles of practical reasoning applied to agents largely derive from work of philosopher Michael Bratman (1990):

“Practical reasoning is a matter of weighing conflicting considerations for and against competing options, where the relevant considerations are provided by what the agent desires/values/cares about and what the agent believes.” (after Wooldridge, p. 65)

Fundamentally different from theoretical reasoning, which is concerned with belief, e.g. reasoning about a mathematical problem.
Practical Reasoning II

Most important ⇒ agent has to stop reasoning and **take action** in a timely fashion.

Practical reasoning is foundation for the **Belief-Desire-Intention** model of agency.

It consists of two main activities:
1. Deliberation: deciding **what** to do
2. Means-ends reasoning: deciding **how** to do it

Combining them appropriately ⇒ foundation of deliberative agency

Intentions I

Demarcation of the term “intentions”:
- In ordinary speech, intentions refer to actions or to states of mind; here we consider the latter.
- Our focus: **future-directed intentions** also called **pro-attitudes** that tend to lead to actions.
- We make **reasonable attempts** to fulfill intentions once we form them, but they may change if circumstances do.

Intentions II

Main properties of intentions:
- **Intentions drive means-ends reasoning**: If I adopt an intention I will attempt to achieve it, this affects action choice
- **Intentions persist**: Once adopted they will not be dropped until achieved, deemed unachievable, or reconsidered
- **Intentions constrain future deliberation**: Options inconsistent with intentions will not be entertained
- **Intentions influence beliefs concerning future practical reasoning**: Rationality requires that I believe I can achieve intention
Background Intentions

Intentions: Bratman’s model

Bratman’s model suggests the following properties:

1. Intentions pose problems for agents, who need to determine ways of achieving them
2. Intentions provide a ‘filter’ for adopting other intentions, which must not conflict
3. Agents track the success of their intentions, and are inclined to try again if their attempts fail
4. Agents believe their intentions are possible
5. Agents do not believe they will bring about their intentions
6. Under certain circumstances, agents believe they will bring about their intentions
7. Agents need not intend all the expected side effects of their intentions

Background Desires

Desires:

- describe the states of affairs that are considered for achievement, i.e. basic preferences of the agent.
- are much weaker than intentions, they are not directly related to activity:

“My desire to play basketball this afternoon is merely a potential influence of my conduct this afternoon. It must vie with my other relevant desires […] before it is settled what I will do. In contrast, once I intend to play basketball this afternoon, the matter is settled: I normally need not continue to weigh the pros and cons. When the afternoon arrives, I will normally just proceed to execute my intentions.”

(Bratman, 1990, after Wooldridge, p. 67)

3.2 BDI Architecture

The BDI Architecture

Sub-components of overall BDI control flow:

- Belief revision function
 - Update beliefs with sensory input and previous belief
- Generate options
 - Use beliefs and existing intentions to generate a set of alternatives/options (=desires)
- Filtering function
 - Choose between competing alternatives and commit to their achievement
- Planning function
 - Given current belief and intentions generate plan for action
- Action generation: iteratively execute actions in plan sequence
The Jason reasoning cycle; Bordini et al. (2007), p. 68

- Rounded boxes and diamonds can be customized (Java)
- Circles are essential parts of Jason ⇒ not modifiable

(1/2) Perception & Belief update

- Sense environment and update beliefs via Belief Update Function BUF
- perceive and BUF can be reprogrammed ⇒ interface to real world robots

(3/4) Messages & SocAcc

- Messages received via checkMail method
- Selecting ‘Socially Acceptable’ messages in SocAcc method ⇒ kind of a low-level “spam filter”

(5) Selecting an event

- Events represent either environment changes or internal changes (related to goals)
- Per reasoning cycle only one pending event is processed (FIFO principle in default implementation)
- Customize this to handle priorities
(6) Retrieving all relevant plans

- Check Plan Library component for all relevant plans
- Triggering event of plan needs to unify with selected event
- Returns set of relevant plans

(7) Check plan contexts

- Select from relevant plans those that are applicable
- Only true, when a plan’s context is a logical consequence of the agent’s Belief Base
- Returns set of applicable plans

(8) Selecting one applicable plan

- Committing to a plan ⇒ forming an intention
- Applicable plan selection function \(S_O \) can be customized
- Default function \(S_O \) uses first-come-first-selected heuristics ⇒ depends on order of plan definitions!!

(9) Selecting an intention

- Default intention selection function \(S_I \) ⇒ round-robin
- Only one action of each intention is executed
- Select top-most intention, execute its first step, push it back to end of list (can be customized, of course)
- ⇒ dividing attention equally over all intentions
(10) Executing one step of an intention

- **Intention** is a stack of partially instantiated plans, e.g.:
 \[[+!g : true \leftarrow a2. | +b : true \leftarrow !g; a1.] \]
- **Body of first plan** is considered, here only a2
- **First formula** is dealt with, here action a2, and deleted
- **Updated intention** is pushed back to intention stack

Mean-ends reasoning

What does the **plan** function actually do?
⇒ **how to achieve goals** (ends) using available **means**

Classical AI planning uses the following representations as inputs:
- A **goal** (intention, task) to be achieved (or maintained)
- Current **state** of the environment (beliefs)
- **Actions** available to the agent

Output is a **plan**, i.e. a “recipe for action” to achieve a goal from current state.
Blocks world example

Some action schemata examples:

Stack(x, y)
 pre{Clear(y), Holding(x)}
 del{Clear(y), Holding(x)}
 add{ArmEmpty, On(x, y)}

UnStack(x, y)
 pre{On(x, y), Clear(x), ArmEmpty}
 del{On(x, y), ArmEmpty}
 add{Holding(x), Clear(y)}

Pickup(x)
 pre{Clear(x), OnTable(x), ArmEmpty}
 del{OnTable(x), ArmEmpty}
 add{Holding(x)}

(Linear) plan = sequence of action schema instances

Acceptable and correct

In a planning problem \(\langle \Delta, O, \gamma \rangle \) a plan \(\pi \) determines a sequence of environment models \(\Delta_0, \ldots, \Delta_n \).
For these we have:

\(\Delta_0 = \Delta \)
\(\Delta_i = (\Delta_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i} \) for \(1 \leq i \leq n \)

Then:

\(\pi \) is acceptable wrt \(\langle \Delta, O, \gamma \rangle \) iff \(\Delta_{i-1} \models P_{\alpha_i} \) for all \(1 \leq i \leq n \)
\(\pi \) is correct wrt \(\langle \Delta, O, \gamma \rangle \) iff \(\pi \) is acceptable and \(\Delta_n \models \gamma \)

The problem of AI planning:

Find a correct plan \(\pi \) for planning problem \(\langle \Delta, O, \gamma \rangle \) if one exists, else announce that none exists.

Formal model of planning

Define a descriptor for an action \(\alpha \in Ac \) as

\[\langle P_\alpha, D_\alpha, A_\alpha \rangle \]

\(\Rightarrow \) sets of first-order logic formulæ of precondition, delete-, and add-list
(Although these may contain variables and logical connectives we ignore these for now and assume only ground atoms)

A planning problem \(\langle \Delta, O, \gamma \rangle \) over \(Ac \) specifies:

\(\Delta \) as the (belief about) initial state (a list of atoms)
\(O = \{ \langle P_\alpha, D_\alpha, A_\alpha \rangle | \alpha \in Ac \} \)
\(\gamma \) (set of literals) to be achieved

A plan is a sequence of actions \(\pi = (\alpha_1, \ldots, \alpha_n) \) with \(\alpha_i \in Ac \)

Practical planning

Below, we will use:

\(head(\pi), tail(\pi), pre(\pi), body(\pi) \) for parts of a plan
\(execute(\pi) \) to denote execution of a whole plan
\(sound(\pi, I, B) \) to denote that \(\pi \) is correct given intentions \(I \) and beliefs \(B \)

Note:

\(\Rightarrow \) Let's integrate means-ends reasoning into BDI implementation
Commitment

With regard to commitment to ends, the previous control loop implemented single-minded commitment (using predicates succeeded(I, B) and impossible(I, B)).

Commitment to ends ⇒ intention reconsideration (IR):

- When would we stop to think whether intentions are already fulfilled/impossible to achieve?
- Trade-off: intention reconsideration is costly but necessary ⇒ meta-level control (reconsider(I, B) predicate)
- IR strategy is optimal if it would have changed intentions had he deliberated again (assuming IR itself is cheap)

Rule of thumb: being “bold” is fine as long as world doesn’t change at a high rate.

BDI control loop (version 1)

Practical Reasoning Agent Control Loop v1:

1. \(B \leftarrow B_0; I \leftarrow I_0; \)
2. while true do
3. \(\rho \leftarrow \text{see}(); \)
4. \(B \leftarrow \text{brf}(B, \rho); D \leftarrow \text{options}(B, I); l \leftarrow \text{filter}(B, D, I); \)
5. \(\pi \leftarrow \text{plan}(B, I, Ac); \)
6. while \(\neg(\text{empty}(\pi) \lor \text{succeeded}(I, B) \lor \text{impossible}(I, B)) \) do
7. \(\alpha \leftarrow \text{head}(\pi); \text{execute}(\alpha); \)
8. \(\pi \leftarrow \text{tail}(\pi); \)
9. end
10. end

What could be the problem with this control loop?

BDI control loop (version 2)

Practical Reasoning Agent Control Loop v2:

1. \(B \leftarrow B_0; I \leftarrow I_0; \)
2. while true do
3. \(\rho \leftarrow \text{see}(); \)
4. \(B \leftarrow \text{brf}(B, \rho); D \leftarrow \text{options}(B, I); l \leftarrow \text{filter}(B, D, I); \)
5. \(\pi \leftarrow \text{plan}(B, I, Ac); \)
6. while \(\neg(\text{empty}(\pi) \lor \text{succeeded}(I, B) \lor \text{impossible}(I, B)) \) do
7. \(\alpha \leftarrow \text{head}(\pi); \text{execute}(\alpha); \)
8. \(\pi \leftarrow \text{tail}(\pi); \)
9. \(\rho \leftarrow \text{see}(); B \leftarrow \text{brf}(B, \rho); \)
10. if reconsider(I, B) then
11. \(D \leftarrow \text{options}(B, I); l \leftarrow \text{filter}(B, D, I); \)
12. end
13. if \(\neg(\text{sound}(\pi, I, B)) \) then
14. \(\pi \leftarrow \text{plan}(B, I, Ac); \)
15. end
16. end
17. end
3.3 Summary

- Thanks

Acknowledgments

These lecture slides are based on the following resources:
- Dr. Michael Rovatsos, The University of Edinburgh
 http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html

Summary

- Discussed practical reasoning systems
- Prevailing paradigm in deliberative agent design
- Deliberation defined as interaction between beliefs, desires, and intentions
- Jason reasoning cycle explained
- Means-ends reasoning and planning
- Commitment strategies and intention reconsideration

⇒ Next time: Reactive and Hybrid Agent Architectures