Multiagent Systems

3. Practical Reasoning Agents

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

May 14, 2014

Multiagent Systems

May 14, 2014 — 3. Practical Reasoning Agents

- 3.1 Background
- 3.2 BDI Architecture
- 3.3 Summary

3.1 Background

- Practical Reasoning
- Intentions
- Desires

Practical Reasoning I

Practical Reasoning is reasoning directed towards actions, i.e. deciding what to do.

Principles of practical reasoning applied to agents largely derive from work of philosopher Michael Bratman (1990):

"Practical reasoning is a matter of weighing conflicting considerations for and against competing options, where the relevant considerations are provided by what the agent desires/values/cares about and what the agent believes." (after Wooldridge, p. 65)

Fundamentally different from theoretical reasoning, which is concerned with belief, e.g. reasoning about a mathematical problem.

Practical Reasoning II

Most important \Rightarrow agent has to stop reasoning and take action in a timely fashion.

Practical reasoning is foundation for

Belief-Desire-Intention

model of agency.

It consists of two main activities:

- 1. Deliberation: deciding what to do
- 2. Means-ends reasoning: deciding how to do it

Combining them appropriately ⇒ foundation of deliberative agency

Deliberation & Means-ends reasoning

Deliberation:

- is concerned with determining what one wants to achieve (considering preferences, choosing goals, etc.)
- generates intentions (interface between deliberation and means-ends reasoning)

Means-ends reasoning:

- is used to determine how the goals are to be achieved by thinking about suitable actions, resources and how to "organize" activity
- generates plans which are turned into actions

Intentions I

Demarcation of the term "intentions":

- In ordinary speech, intentions refer to actions or to states of mind; here we consider the latter.
- ► Our focus: future-directed intentions also called pro-attitudes that tend to lead to actions.
- ▶ We make reasonable attempts to fulfill intentions once we form them, but they may change if circumstances do.

Intentions II

Main properties of intentions:

- ► Intentions drive means-ends reasoning: If I adopt an intention I will attempt to achieve it, this affects action choice
- ► Intentions persist: Once adopted they will not be dropped until achieved, deemed unachievable, or reconsidered
- ► Intentions constrain future deliberation: Options inconsistent with intentions will not be entertained
- ► Intentions influence beliefs concerning future practical reasoning: Rationality requires that I believe I can achieve intention

Intentions: Bratman's model

Bratman's model suggests the following properties:

- 1. Intentions pose problems for agents, who need to determine ways of achieving them
- 2. Intentions provide a 'filter' for adopting other intentions, which must not conflict
- 3. Agents track the success of their intentions, and are inclined to try again if their attempts fail
- 4. Agents believe their intentions are possible
- 5. Agents do not believe they will not bring about their intentions
- 6. Under certain circumstances, agents believe they will bring about their intentions
- 7. Agents need not intend all the expected side effects of their intentions

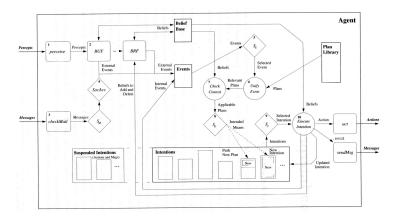
Desires

Desires:

- ▶ describe the states of affairs that are considered for achievement, i.e. basic preferences of the agent.
- are much weaker than intentions, they are not directly related to activity:

"My desire to play basketball this afternoon is merely a potential influence of my conduct this afternoon. It must vie with my other relevant desires [...] before it is settled what I will do. In contrast, once I intend to play basketball this afternoon, the matter is settled: I normally need not continue to weigh the pros and cons. When the afternoon arrives, I will normally just proceed to execute my intentions." (Bratman, 1990, after Wooldridge, p. 67)

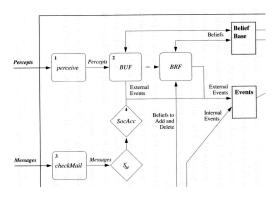
3.2 BDI Architecture


- Jason reasoning cycle
- Formal model of BDI
- STRIPS
- Formal model of Planning
- General BDI control loop

The BDI Architecture

Sub-components of overall BDI control flow:

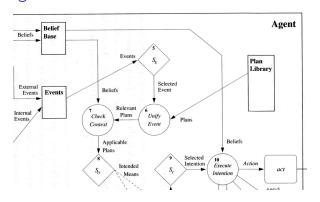
- Belief revision function
 - Update beliefs with sensory input and previous belief
- ► Generate options
 - ► Use beliefs and existing intentions to generate a set of alternatives/options (=desires)
- ► Filtering function
 - Choose between competing alternatives and commit to their achievement
- Planning function
 - ► Given current belief and intentions generate plan for action
- Action generation: iteratively execute actions in plan sequence


The Jason reasoning cycle

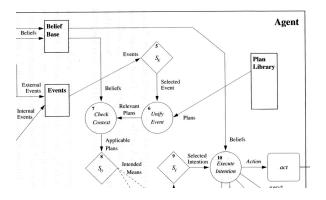
The Jason reasoning cycle; Bordini et al. (2007), p. 68

- ► Rounded boxes and diamonds can be customized (Java)
- \triangleright Circles are essential parts of Jason \Rightarrow not modifiable

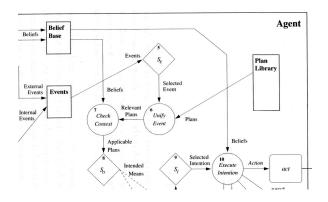
(1/2) Perception & Belief update


- Sense environment and update beliefs via Belief Update Function BUF
- ▶ perceive and BUF can be reprogrammed ⇒ interface to real world robots

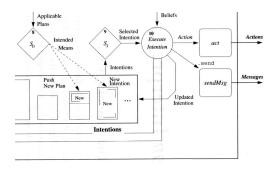
(3/4) Messages & SocAcc


- Messages received via checkMail method
- ► Selecting 'Socially Acceptable' messages in SocAcc method ⇒ kind of a low-level "spam filter"

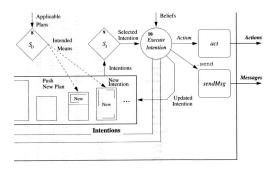
(5) Selecting an event


- ► Events represent either environment changes or internal changes (related to goals)
- Per reasoning cycle only one pending event is processed (FIFO principle in default implementation)
- ► Customize this to handle priorities

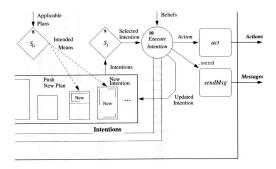
(6) Retrieving all relevant plans


- Check Plan Library component for all relevant plans
- Triggering event of plan needs to unify with selected event
- ► Returns set of relevant plans

(7) Check plan contexts


- ► Select from relevant plans those that are applicable
- Only true, when a plan's context is a logical consequence of the agent's Belief Base
- ► Returns set of applicable plans

(8) Selecting one applicable plan


- ► Committing to a plan ⇒ forming an intention
- lacktriangle Applicable plan selection function $\mathcal{S}_{\mathcal{O}}$ can be customized
- ▶ Default function $S_{\mathcal{O}}$ uses first-come-first-selected heuristics \Rightarrow depends on order of plan definitions!!!

(9) Selecting an intention

- ▶ Default intention selection function $S_{\mathcal{I}} \Rightarrow \mathbf{round}\text{-}\mathbf{robin}$
- ▶ Only one action of each intention is executed
- Select top-most intention, execute its first step, push it back to end of list (can be customized, of course)
- ▶ ⇒ dividing attention equally over all intentions

(10) Executing one step of an intention

- ► Intention is a stack of partially instantiated plans, e.g.: [+!g : true <- a2. | +b : true <- !g; a1.]
- Body of first plan is considered, here only a2
- First formula is dealt with here action a2, and deleted
- **Updated** intention is pushed back to intention stack

- ▶ Let $B \subseteq Bel$, $D \subseteq Des$, $I \subseteq Int$ be sets describing beliefs, desires, and intentions of an agent
- Percepts Per and actions Ac as before
- Plan set of all plans (for now: sequences of actions)

Model described through a set of abstract functions:

- ▶ Belief revision brf : $\mathcal{P}(Bel) \times Per \rightarrow \mathcal{P}(Bel)$
- ▶ Option generation options : $\mathcal{P}(Bel) \times \mathcal{P}(Int) \rightarrow \mathcal{P}(Des)$
- ▶ Filter to select options filter : $\mathcal{P}(Bel) \times \mathcal{P}(Des) \times \mathcal{P}(Int) \rightarrow \mathcal{P}(Int)$
- ▶ Means-ends reasoning plan : $\mathcal{P}(Bel) \times \mathcal{P}(Int) \times \mathcal{P}(Ac) \rightarrow Plan$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Freehlbuutnige) gent Systems

Means-ends reasoning

What does the *plan* function actually do?

⇒ how to achieve goals (ends) using available means

Classical Al planning uses the following representations as inputs:

- ► A goal (intention, task) to be achieved (or maintained)
- ► Current state of the environment (beliefs)
- ► Actions available to the agent

Output is a plan, i.e. a "recipe for action" to achieve a goal from current state.

STRIPS: classical planning system

STRIPS most famous classical planning system:

- State and goal are described as logical formulæ
- ► Action schemata describe preconditions & effects of actions

Most famous application scenario ⇒ Blocks world:

- 1. Given: A set of cube-shaped blocks sitting on a table
- 2. Robot arm can move around/stack blocks (one at a time)
- 3. Goal: configuration of stacks of blocks

Formalization in STRIPS:

► State description through set of literals, e.g.

```
{Clear(A), On(A, B), OnTable(B), OnTable(C), Clear(C)}
```

Same for goal description, e.g.

```
{OnTable(A), OnTable(B), OnTable(C)}
```

Action schemata: precondition/add/delete list notation

Blocks world example

Some action schemata examples:

```
Stack(x, y)
pre{Clear(y), Holding(x)}
del{Clear(y), Holding(x)}
add{ArmEmpty, On(x, y)}
UnStack(x, y)
pre{On(x, y), Clear(x), ArmEmpty}
de|\{On(x, y), ArmEmpty\}
add{Holding(x), Clear(y)}
Pickup(x)
pre{Clear(x), OnTable(x), ArmEmpty}
del{OnTable(x), ArmEmpty}
add\{Holding(x)\}
PutDown(x) ???
```

(Linear) plan = sequence of action schema instances

Formal model of planning

Define a descriptor for an action $\alpha \in Ac$ as

$$\langle P_{\alpha}, D_{\alpha}, A_{\alpha} \rangle$$

⇒ sets of first-order logic formulæ of precondition, delete-, and add-list (Although these may contain variables and logical connectives we ignore these for now and assume only ground atoms)

A planning problem $\langle \Delta, O, \gamma \rangle$ over Ac specifies:

- Δ as the (belief about) initial state (a list of atoms)
- lacktriangledown a set of operator descriptors $O=\{\langle P_{lpha},D_{lpha},A_{lpha}
 angle|lpha\in Ac\}$
- \blacktriangleright an intention γ (set of literals) to be achieved

A plan is a sequence of actions $\pi = (\alpha_1, \dots, \alpha_n)$ with $\alpha_i \in Ac$

Acceptable and correct

In a planning problem $\langle \Delta, O, \gamma \rangle$ a plan π determines a sequence of environment models $\Delta_0, \ldots, \Delta_n$.

For these we have:

- $ightharpoonup \Delta_0 = \Delta$
- $ightharpoonup \Delta_i = (\Delta_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i} \text{ for } 1 < i < n$

Then:

- \blacktriangleright π is acceptable wrt $\langle \Delta, O, \gamma \rangle$ iff $\Delta_{i-1} \models P_{\alpha_i}$ for all $1 \le i \le n$
- \blacktriangleright π is correct wrt $\langle \Delta, O, \gamma \rangle$ iff π is acceptable and $\Delta_n \models \gamma$

The problem of Al planning:

Find a correct plan π for planning problem $\langle \Delta, O, \gamma \rangle$ if one exists, else announce that none exists.

Practical planning

Below, we will use:

- ▶ $head(\pi)$, $tail(\pi)$, $pre(\pi)$, $body(\pi)$ for parts of a plan
- ightharpoonup execution of a whole plan
- $sound(\pi, I, B)$ to denote that π is correct given intentions I and beliefs B

Note:

- Planning does note need to involve plan generation
- ▶ Plan libraries can be used (as in Jason)
- ⇒ Let's integrate means-ends reasoning into BDI implementation

Practical Reasoning Agent Control Loop v1:

```
1 B \leftarrow B_0; I \leftarrow I_0;

2 while true do

3 \rho \leftarrow see();

4 B \leftarrow brf(B, \rho); D \leftarrow options(B, I); I \leftarrow filter(B, D, I);

5 \pi \leftarrow plan(B, I, Ac);

6 while \neg(empty(\pi) \lor succeeded(I, B) \lor impossible(I, B)) do

7 \alpha \leftarrow head(\pi); execute(\alpha);

8 \pi \leftarrow tail(\pi);

9 end

10 end
```

What could be the problem with this control loop?

Commitment

Are deliberation and planning sufficient to achieve desired behaviour? \Rightarrow Unfortunately not.

After filter function, agent makes a commitment to chosen option (this implies temporal persistence)

 \Rightarrow How long should an intention persist? (remember dung beetle?)

Three different commitment strategies:

- ► Blind/fanatical commitment: maintain intention until it has been achieved
- ► Single-minded commitment: maintain intention until achieved or impossible
- ► Open-minded commitment: maintain intention as long as it is believed possible

Important: agents commit themselves both to ends (intention) and means (plan)

With regard to commitment to means, the previous control loop implemented single-minded commitment (using predicates succeeded(I, B) and impossible(I, B)).

Commitment to ends \Rightarrow intention reconsideration (IR):

- When would we stop to think whether intentions are already fulfilled/impossible to achieve?
- ► Trade-off: intention reconsideration is costly but necessary ⇒ meta-level control (reconsider(I, B) predicate)
- ► IR strategy is optimal if it would have changed intentions had he deliberated again (assuming IR itself is cheap)

Rule of thumb: being "bold" is fine as long as world doesn't change at a high rate

BDI control loop (version 2)

Practical Reasoning Agent Control Loop v2:

```
1 B \leftarrow B_0: I \leftarrow I_0:
 2 while true do
          \rho \leftarrow see():
           B \leftarrow brf(B, \rho), D \leftarrow options(B, I), I \leftarrow filter(B, D, I),
           \pi \leftarrow plan(B, I, Ac);
            while \neg (empty(\pi) \lor succeeded(I, B) \lor impossible(I, B)) do
                  \alpha \leftarrow head(\pi), execute(\alpha).
                  \pi \leftarrow tail(\pi):
                  \rho \leftarrow see(); B \leftarrow brf(B, \rho);
                  if reconsider(I, B) then
10
                         D \leftarrow options(B, I), I \leftarrow filter(B, D, I),
11
                  end
12
                  if \neg (sound(\pi, I, B)) then
13
                         \pi \leftarrow plan(B, I, Ac);
14
                  end
15
            end
16
17
    end
```

3.3 Summary

■ Thanks

Summary

- Discussed practical reasoning systems
- Prevailing paradigm in deliberative agent design
- ▶ Deliberation defined as interaction between beliefs, desires, and intentions
- ► Jason reasoning cycle explained
- Means-ends reasoning and planning
- Commitment strategies and intention reconsideration
- ⇒ Next time: Reactive and Hybrid Agent Architectures

Acknowledgments

These lecture slides are based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- ▶ Michael Wooldridge: An Introduction to MultiAgent Systems. John Wiley & Sons, 2nd edition 2009.
- Rafael H. Bordini, Jomi Fred Hübner, Michael Wooldridge: Programming Multi-Agent Systems in AgentSpeak using Jason, Wiley, 2007.