
Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�Multiagent Systems

2. Deductive Reasoning Agents

B. Nebel, C. Becker-Asano, S. Wöl�

Albert-Ludwigs-Universität Freiburg

May 7, 2014

1 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Introduction

2 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

What are agent architectures?

An agent architecture is a software design for an agent.

The last lecture introduced the top-level decomposition into:

perception � state � decision � action

An agent architecture de�nes:

Key data structures

operations on data structures

control �ow between operations

3 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Agent Architectures

�[A] particular methodology for building [agents]. It speci�es
how . . . the agent can be decomposed into the construction of a
set of component modules and how these modules should be
made to interact. The total set of modules and their
interactions has to provide an answer to the question of how
the sensor data and the current internal state of the agent
determine the actions . . . and future internal state of the agent.
An architecture encompasses techniques and algorithms that
support this methodology.� (Pattie Maes, 1991)

�[A] speci�c collection of software (or hardware) modules,
typically designated by boxes with arrows indicating the data
and control �ow among the modules. A more abstract view of
an architecture is as a general methodology for designing
particular modular decomposition for particular tasks.�
(Leslie Kaelbing, 1991)

4 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Example: �MoveIt� component for ROS

�[The] high-level system architecture for the primary node
provided by MoveIt! called move_group, pulling all the
individual components together to provide a set of ROS actions
and services for users to use.�
(http://moveit.ros.org/documentation/concepts/)

5 / 1

http://moveit.ros.org/documentation/concepts/

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Types of Agents

1956 � present: Symbolic Reasoning Agents
Its purest expression, proposes that agents use explicit
logical reasoning in order to decide what to do

1985 � present: Reactive Agents
Problems with symbolic reasoning led to a reaction against
this � led to the reactive agents movement

1990 � present: Hybrid Agents
Hybrid architectures attempt to combine the best of
symbolic and reactive architectures

6 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Symbolic Reasoning Agents

The classical approach to building agents:

Agents as a particular type of knowledge-based system

Make use of associated methodologies

Paradigm known as symbolic AI

De�nition 16: Deliberative Agent (Architecture)

A deliberative agent or agent architecture is one that:

contains an explicitly represented, symbolic model of the
world, and

makes decisions (e.g. about actions to perform) via
symbolic reasoning.

7 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Representing the environment symbolically

The transduction problem:

how to translate the real world into an accurate, adequate
symbolic description

in time for that description to be useful ⇒ vision, speech
understanding, etc.

8 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Problems with Symbolic Approaches

The representation/reasoning problem:

how to symbolically represent information about
complex real-world entities and processes

how to let agents reason with this information in time for
the results to be useful ⇒ knowledge representation,
automated reasoning, planning

In general:

Real-world problems (apart from games like chess) are
very hard to be solved this way

Underlying problem is the complexity of symbol
manipulation algorithms in general, e.g. intractability of
of search-based symbol manipulation algorithms

These problems let to alternative approaches discussed
later. . .

9 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Deductive Reasoning
Agents

10 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Deductive Reasoning Agents

Main assumptions:

Agents use symbolic representations of the world around
them

They reason about the world by syntactically manipulating
symbols

Assumed su�cient to achieve intelligent behavior
according to the �symbol system hypothesis�

Deductive reasoning ⇒ speci�c kind of symbolic approach
where representations are logical formulae and syntactic
manipulation is achieved by logical deduction (theorem
proving)

11 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Agents as theorem provers � background

Simple model of �deliberate� agents:

Internal state is a database of �rst-order logic formulae

Corresponds to the �beliefs� of the agent (may be
erroneous, out of date, etc.)

Let L be the set of sentences of �rst-order logic,
D = P(L) be the set of all L-databases (i.e., set of
internal agent states)

Write ∆ `ρ ψ if ψ can be proved from DB ∆ ∈ D using
(only) deduction rules ρ

Modify abstract agent architecture speci�cation:

see: E → Per (1)

action: D → Ac (2)

next: D × Per → D (3)

12 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Agents as theorem provers � background

Action selection as theorem proving

Assume special predicate Do(α) for action description α

If Do(α) can be derived, α is the best action to preform

Control loop:

1 function action(∆ : D): returns an action α ∈ Ac
2 foreach α ∈ Ac do
3 if ∆ `p Do(α) then
4 return α;

5 end
6 foreach α ∈ Ac do
7 if ∆ 0p ¬Do(α) then
8 return α;

9 end
10 return null;

If no �good� action ⇒ search for consistent action instead.

13 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Example: the vacuum world

A small robot to help with housework:

Perceptions: dirt sensor, orientation (N, S, E, W)

Actions: suck up dirt, step forward, turn right (90◦)

Starting point (0, 0), robot cannot exit the room

Goal: traverse room continually, search for dirt and remove it
14 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Example: the agent for the vacuum world

A sketch of the agent:

15 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Example: Logical formulation

Formulate this problem in logical terms:

Percept is either dirt or null

Actions are forward, suck, and turn

Domain predicates are In(x,y), Dirt(x,y), Facing(d)
next() function must update internal (belief) state of agent:

old(∆) := {P (t1 . . . tn)|P ∈ {In,Dirt, Facing} ∧ P (t1 . . . tn) ∈ ∆}

Assume new : D × Per → D adds new predicates to database, then
next(∆, p) = (∆/old(∆)) ∪ new(∆, p).
Agent behavior speci�ed by hardwired rules, e.g.:

In(x, y) ∧Dirt(x, y)⇒ Do(suck)

In(0, 0) ∧ Facing(N) ∧ ¬Dirt(0, 0)⇒ Do(foreward)

In(0, 1) ∧ Facing(N) ∧ ¬Dirt(0, 1)⇒ Do(foreward)

In(0, 2) ∧ Facing(N) ∧ ¬Dirt(0, 2)⇒ Do(turn)

In(0, 2) ∧ Facing(E)⇒ Do(forward)

16 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Critique of the symbolic approach

How useful is this kind of agent design in practice?

Naive implementation certainly won't work!

What if world changes after optimal action was chosen?
⇒ notion of calculative rationality, i.e. decision of
system optimal, when decision making began

In case of �rst-order logic, not even termination can be
guaranteed (undecidability) . . . let alone real time behavior

Formalization of real-world environments often di�cult and
counter-intuitive

Clear advantage: elegant semantics, declarative �avor,
simplicity

17 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Agent oriented programming

Based on Shoham's (1993) idea of bringing societal view into
agent programming (AGENT0 programming language).
Programming agents using mentalistic notions (beliefs, desires,
intentions).
Agent speci�ed in terms of:

set of capabilities

set of initial beliefs

set of initial commitments

set of commitment rules

Key component commitment rules:

composed of message condition, mental condition, and
action (private or communicative)

rule matching determines whether rule should �re

message types are requests, unrequests (change
commitments), and inform messages (change beliefs)

18 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

AOP � commitment rules in AGENT0

Suppose we want to describe commitment rule:
�If I receive a message from agent requesting me to do
action at time and I believe that (a) agent is a friend, (b) I
can do the action and (c) at time I am not committed to
doing any other action then commit to action at time�

This can be expressed in AGENT0 like so:

COMMIT(agent,REQUEST,DO(time,action)

(B,[now,Friend agent] AND CAN(self,action) AND NOT

[time,CMT(self,anyaction)]),

self, DO(time,action))

Top-level control loop used to describe AGENT0 operation:

Read all messages, update beliefs and commitments

Execute all commitments with satis�ed capability condition

Loop.
19 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Concurrent MetateM

Features of Concurrent MetateM:

Based on direct execution of logical formulae

Concurrently executing agents communicate via
asynchronous broadcast message passing

Two-part agent speci�cation:

interface de�nes how agent interacts with other agents
computational engine de�nes how agent will act

Agent interface consists of:

unique agent identi�er
�environment propositions�, i.e. a set of symbols specifying
which messages the agent accepts
�component propositions�, i.e. a set of symbols specifying
messages the agent will send

Example: interface de�nition of �stack�
⇒ stack(pop, push)[popped, full]

20 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Concurrent MetateM � program rules

Computational engine of Concurrent MetateM is based on
MetateM, which is based on program rules, which are
temporal logic formaulae of the form:

antecendent about past ⇒ consequent about present and future

�Declarative past and imperative future� paradigm (Gabbay, 1989)

Agents try to make present and future true, given the past:

Collect constraints with old commitments

These taken together form current constraints

Next state is constructed by trying to ful�l these

Disjunctive formula ⇒ choices

Unsatis�ed commitments are carried over to the next cycle

21 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Propositional MetateM logic

Propositional logic with temporal operators:

©ϕ ϕ is true tomorrow

}ϕ ϕ was true yesterday

♦ϕ ϕ now or at some point in the future

�ϕ ϕ now and at all points in the future

�ϕ ϕ was true sometimes in the past

�ϕ ϕ was always true in the past

ϕUψ ψ some time in the future, ϕ until then

ϕSψ ψ some time in the past, ϕ since then (but not now)

ϕWψ ψ was true unless ϕ was true in the past

ϕZψ like �S� but ϕ may have never become true

Beginning of time: special nullary operator (start) satis�ed only
at the beginning

22 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Agent execution

Some examples:

�important(agents): �now and for all times agents are important�

♦important(agents): �agents will be important at some point�

¬friends(us) U apologize(you): �not friends until you apologize�

©apologize(you): �you will apologize tomorrow�

Agent execution:
Attempt to match past-time antecedents of rules against
history and execute consequents of rules that �re.

More precisely:

1 Update history with received messages (environment propositions)

2 Check which rules �re by comparing antecedents with history

3 Jointly execute �red rule consequents together with commitments
carried over from previous cycles

4 Loop.

23 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Speci�cation of an example system

Consider the following de�nition of a system:

rp(ask1, ask2)[give1, give2] :

}ask1 ⇒ ♦give1
}ask2 ⇒ ♦give2
start⇒ �¬(give1 ∧ give2)

rc1(give1)[ask1] :

start⇒ ask1

}ask1 ⇒ ask1

rc2(ask1, give2)[ask2] :

}(ask1 ∧ ¬ask2)⇒ ask2

What does it do?

24 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Example run

rp is [r]esource [p]roducer, cannot give to both agents
simultaneously, but will give eventually to any agent that asks.
rc1 and rc2 are resource consumers:

rc1 will ask in every cycle

rc2 only asks if it has not asked previously and rc1 has
asked

Example run:

time rp rc1 rc2
0 ask1
1 ask1 ask1 ask2
2 ask1, ask2, give1 ask1
3 ask1, give2 ask1, give1 ask2
4 ask1, ask2, give1 ask1 give2
5

25 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Summary

26 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Summary

Agent architectures / MoveIt (ROS)

Symbolic Reasoning Agents

Agents as theorem provers

General architecture, vacuum world example

Agent-oriented programming (AGENT0): �rst approach to
use mentalistic concepts in programming (but not a true
programming language)

Concurrent MetateM & temporal logic: powerful and
expressive but somewhat speci�c

⇒ Next time: Practical reasoning agents

27 / 1

Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

Acknowledgments

These lecture slides are partly based on the following slides:

Dr. Michael Rovatsos, The University of Edinburgh
http://www.inf.ed.ac.uk/teaching/courses/abs/

abs-timetable.html

Prof. Micheal Wooldridge, University of Oxford
http://www.cs.ox.ac.uk/people/michael.

wooldridge/pubs/imas/distrib/pdf-index.html

28 / 1

http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html
http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/pdf-index.html
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/pdf-index.html

	Introduction
	Agent Architectures
	Symbolic reasoning agents

	Deductive Reasoning Agents
	Agents as theorem provers
	Agent-oriented programming (AOP)

	Summary
	Thanks

