
Multiagent Systems

2. Deductive Reasoning Agents

B. Nebel, C. Becker-Asano, S. Wöl�

Albert-Ludwigs-Universität Freiburg

May 7, 2014

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 1 / 28

Multiagent Systems
May 7, 2014 � 2. Deductive Reasoning Agents

2.1 Introduction

2.2 Deductive Reasoning Agents

2.3 Summary

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 2 / 28

Introduction

2.1 Introduction

Agent Architectures
Symbolic reasoning agents

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 2 / 28

Introduction Agent Architectures

What are agent architectures?

An agent architecture is a software design for an agent.

The last lecture introduced the top-level decomposition into:

perception � state � decision � action

An agent architecture de�nes:

I Key data structures

I operations on data structures

I control �ow between operations

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 3 / 28

Introduction Agent Architectures

Agent Architectures

�[A] particular methodology for building [agents]. It speci�es how . . . the
agent can be decomposed into the construction of a set of component
modules and how these modules should be made to interact. The total set
of modules and their interactions has to provide an answer to the question
of how the sensor data and the current internal state of the agent
determine the actions . . . and future internal state of the agent. An
architecture encompasses techniques and algorithms that support this
methodology.� (Pattie Maes, 1991)

�[A] speci�c collection of software (or hardware) modules, typically
designated by boxes with arrows indicating the data and control �ow
among the modules. A more abstract view of an architecture is as a
general methodology for designing particular modular decomposition for
particular tasks.�
(Leslie Kaelbing, 1991)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 4 / 28

Introduction Agent Architectures

Example: �MoveIt� component for ROS

�[The] high-level system architecture for the primary node provided by
MoveIt! called move_group, pulling all the individual components together
to provide a set of ROS actions and services for users to use.�
(http://moveit.ros.org/documentation/concepts/)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 5 / 28

Introduction Symbolic reasoning agents

Types of Agents

I 1956 � present: Symbolic Reasoning Agents
Its purest expression, proposes that agents use explicit logical
reasoning in order to decide what to do

I 1985 � present: Reactive Agents
Problems with symbolic reasoning led to a reaction against this � led
to the reactive agents movement

I 1990 � present: Hybrid Agents
Hybrid architectures attempt to combine the best of symbolic and
reactive architectures

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 6 / 28

Introduction Symbolic reasoning agents

Symbolic Reasoning Agents

The classical approach to building agents:

I Agents as a particular type of knowledge-based system

I Make use of associated methodologies

I Paradigm known as symbolic AI

De�nition 16: Deliberative Agent (Architecture)

A deliberative agent or agent architecture is one that:

I contains an explicitly represented, symbolic model of the world, and

I makes decisions (e.g. about actions to perform) via symbolic
reasoning.

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 7 / 28

http://moveit.ros.org/documentation/concepts/

Introduction Symbolic reasoning agents

Representing the environment symbolically

The transduction problem:

I how to translate the real world into an accurate, adequate symbolic
description

I in time for that description to be useful ⇒ vision, speech
understanding, etc.

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 8 / 28

Introduction Symbolic reasoning agents

Problems with Symbolic Approaches

The representation/reasoning problem:

I how to symbolically represent information about complex real-world
entities and processes

I how to let agents reason with this information in time for the results
to be useful ⇒ knowledge representation, automated reasoning,
planning

In general:

I Real-world problems (apart from games like chess) are very hard to
be solved this way

I Underlying problem is the complexity of symbol manipulation
algorithms in general, e.g. intractability of of search-based symbol
manipulation algorithms

I These problems let to alternative approaches discussed later. . .

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 9 / 28

Deductive Reasoning Agents

2.2 Deductive Reasoning Agents

Agents as theorem provers
Agent-oriented programming (AOP)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 10 / 28

Deductive Reasoning Agents

Deductive Reasoning Agents

Main assumptions:

I Agents use symbolic representations of the world around them

I They reason about the world by syntactically manipulating symbols

I Assumed su�cient to achieve intelligent behavior according to the
�symbol system hypothesis�

Deductive reasoning ⇒ speci�c kind of symbolic approach where
representations are logical formulae and syntactic manipulation is
achieved by logical deduction (theorem proving)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 11 / 28

Deductive Reasoning Agents Agents as theorem provers

Agents as theorem provers � background

Simple model of �deliberate� agents:

I Internal state is a database of �rst-order logic formulae

I Corresponds to the �beliefs� of the agent (may be erroneous, out of
date, etc.)

I Let L be the set of sentences of �rst-order logic, D = P(L) be the set
of all L-databases (i.e., set of internal agent states)

I Write ∆ `ρ ψ if ψ can be proved from DB ∆ ∈ D using (only)
deduction rules ρ

Modify abstract agent architecture speci�cation:

see: E → Per (1)

action: D → Ac (2)

next: D × Per → D (3)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 12 / 28

Deductive Reasoning Agents Agents as theorem provers

Agents as theorem provers � background

Action selection as theorem proving

I Assume special predicate Do(α) for action description α

I If Do(α) can be derived, α is the best action to preform

Control loop:

1 function action(∆ : D): returns an action α ∈ Ac
2 foreach α ∈ Ac do
3 if ∆ `p Do(α) then
4 return α;

5 end
6 foreach α ∈ Ac do
7 if ∆ 0p ¬Do(α) then
8 return α;

9 end
10 return null;

If no �good� action ⇒ search for consistent action instead.

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 13 / 28

Deductive Reasoning Agents Agents as theorem provers

Example: the vacuum world
A small robot to help with housework:

I Perceptions: dirt sensor, orientation (N, S, E, W)

I Actions: suck up dirt, step forward, turn right (90◦)

I Starting point (0, 0), robot cannot exit the room

Goal: traverse room continually, search for dirt and remove it
B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 14 / 28

Deductive Reasoning Agents Agents as theorem provers

Example: the agent for the vacuum world

A sketch of the agent:

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 15 / 28

Deductive Reasoning Agents Agents as theorem provers

Example: Logical formulation
Formulate this problem in logical terms:

I Percept is either dirt or null

I Actions are forward, suck, and turn

I Domain predicates are In(x,y), Dirt(x,y), Facing(d)

next() function must update internal (belief) state of agent:

old(∆) := {P(t1 . . . tn)|P ∈ {In,Dirt,Facing} ∧ P(t1 . . . tn) ∈ ∆}

Assume new : D × Per → D adds new predicates to database, then
next(∆, p) = (∆/old(∆)) ∪ new(∆, p).
Agent behavior speci�ed by hardwired rules, e.g.:

In(x , y) ∧ Dirt(x , y)⇒ Do(suck)

In(0, 0) ∧ Facing(N) ∧ ¬Dirt(0, 0)⇒ Do(foreward)

In(0, 1) ∧ Facing(N) ∧ ¬Dirt(0, 1)⇒ Do(foreward)

In(0, 2) ∧ Facing(N) ∧ ¬Dirt(0, 2)⇒ Do(turn)

In(0, 2) ∧ Facing(E)⇒ Do(forward)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 16 / 28

Deductive Reasoning Agents Agents as theorem provers

Critique of the symbolic approach

How useful is this kind of agent design in practice?

I Naive implementation certainly won't work!

I What if world changes after optimal action was chosen?
⇒ notion of calculative rationality, i.e. decision of system optimal,
when decision making began

I In case of �rst-order logic, not even termination can be guaranteed
(undecidability) . . . let alone real time behavior

I Formalization of real-world environments often di�cult and
counter-intuitive

I Clear advantage: elegant semantics, declarative �avor, simplicity

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 17 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Agent oriented programming

Based on Shoham's (1993) idea of bringing societal view into agent
programming (AGENT0 programming language). Programming agents
using mentalistic notions (beliefs, desires, intentions).
Agent speci�ed in terms of:

I set of capabilities

I set of initial beliefs

I set of initial commitments

I set of commitment rules

Key component commitment rules:

I composed of message condition, mental condition, and action (private
or communicative)

I rule matching determines whether rule should �re

I message types are requests, unrequests (change commitments), and
inform messages (change beliefs)

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 18 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

AOP � commitment rules in AGENT0

Suppose we want to describe commitment rule:
�If I receive a message from agent requesting me to do action at time

and I believe that (a) agent is a friend, (b) I can do the action and (c)
at time I am not committed to doing any other action then commit to
action at time�

This can be expressed in AGENT0 like so:

COMMIT(agent,REQUEST,DO(time,action)

(B,[now,Friend agent] AND CAN(self,action) AND NOT

[time,CMT(self,anyaction)]),

self, DO(time,action))

Top-level control loop used to describe AGENT0 operation:

I Read all messages, update beliefs and commitments

I Execute all commitments with satis�ed capability condition

I Loop.

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 19 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Concurrent MetateM

Features of Concurrent MetateM:

I Based on direct execution of logical formulae

I Concurrently executing agents communicate via asynchronous
broadcast message passing

I Two-part agent speci�cation:
I interface de�nes how agent interacts with other agents
I computational engine de�nes how agent will act

I Agent interface consists of:
I unique agent identi�er
I �environment propositions�, i.e. a set of symbols specifying which

messages the agent accepts
I �component propositions�, i.e. a set of symbols specifying messages the

agent will send

I Example: interface de�nition of �stack�
⇒ stack(pop, push)[popped , full]

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 20 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Concurrent MetateM � program rules

Computational engine of Concurrent MetateM is based on MetateM,
which is based on program rules, which are temporal logic formaulae of
the form:

antecendent about past ⇒ consequent about present and future

�Declarative past and imperative future� paradigm (Gabbay, 1989)

Agents try to make present and future true, given the past:

I Collect constraints with old commitments

I These taken together form current constraints

I Next state is constructed by trying to ful�l these

I Disjunctive formula ⇒ choices

I Unsatis�ed commitments are carried over to the next cycle

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 21 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Propositional MetateM logic
Propositional logic with temporal operators:

©ϕ ϕ is true tomorrow

}ϕ ϕ was true yesterday

♦ϕ ϕ now or at some point in the future

�ϕ ϕ now and at all points in the future

�ϕ ϕ was true sometimes in the past

�ϕ ϕ was always true in the past

ϕUψ ψ some time in the future, ϕ until then

ϕSψ ψ some time in the past, ϕ since then (but not now)

ϕWψ ψ was true unless ϕ was true in the past

ϕZψ like �S� but ϕ may have never become true

Beginning of time: special nullary operator (start) satis�ed only at the
beginning

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 22 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Agent execution

Some examples:

I �important(agents): �now and for all times agents are important�

I ♦important(agents): �agents will be important at some point�

I ¬friends(us) U apologize(you): �not friends until you apologize�

I ©apologize(you): �you will apologize tomorrow�

Agent execution:
Attempt to match past-time antecedents of rules against history and
execute consequents of rules that �re.

More precisely:

1. Update history with received messages (environment propositions)

2. Check which rules �re by comparing antecedents with history

3. Jointly execute �red rule consequents together with commitments carried over
from previous cycles

4. Loop.

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 23 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Speci�cation of an example system

Consider the following de�nition of a system:

rp(ask1, ask2)[give1, give2] :

}ask1 ⇒ ♦give1
}ask2 ⇒ ♦give2
start ⇒ �¬(give1 ∧ give2)

rc1(give1)[ask1] :

start ⇒ ask1

}ask1 ⇒ ask1

rc2(ask1, give2)[ask2] :

}(ask1 ∧ ¬ask2)⇒ ask2

What does it do?

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 24 / 28

Deductive Reasoning Agents Agent-oriented programming (AOP)

Example run

rp is [r]esource [p]roducer, cannot give to both agents simultaneously, but
will give eventually to any agent that asks.
rc1 and rc2 are resource consumers:

I rc1 will ask in every cycle

I rc2 only asks if it has not asked previously and rc1 has asked

Example run:

time rp rc1 rc2
0 ask1
1 ask1 ask1 ask2
2 ask1, ask2, give1 ask1
3 ask1, give2 ask1, give1 ask2
4 ask1, ask2, give1 ask1 give2
5

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 25 / 28

Summary

2.3 Summary

Thanks

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 26 / 28

Summary

Summary

I Agent architectures / MoveIt (ROS)

I Symbolic Reasoning Agents

I Agents as theorem provers

I General architecture, vacuum world example

I Agent-oriented programming (AGENT0): �rst approach to use
mentalistic concepts in programming (but not a true programming
language)

I Concurrent MetateM & temporal logic: powerful and expressive but
somewhat speci�c

⇒ Next time: Practical reasoning agents

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 27 / 28

Summary Thanks

Acknowledgments

These lecture slides are partly based on the following slides:

I Dr. Michael Rovatsos, The University of Edinburgh
http://www.inf.ed.ac.uk/teaching/courses/abs/

abs-timetable.html

I Prof. Micheal Wooldridge, University of Oxford
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/

imas/distrib/pdf-index.html

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems May 7, 2014 28 / 28

http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html
http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/pdf-index.html
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/pdf-index.html

	Introduction
	Agent Architectures
	Symbolic reasoning agents

	Deductive Reasoning Agents
	Agents as theorem provers
	Agent-oriented programming (AOP)

	Summary
	Thanks

