Multiagent Systems
2. Abstract Architectures for Agents

B. Nebel, C. Becker-Asano, S. Wölfl
Albert-Ludwigs-Universität Freiburg
2nd of May 2014

2.1 General information

2.2 Agents (once again)

2.3 Abstract Architectures for Agents

2.4 Summary

Recommended reading:

Software:
- JASON: http://jason.sourceforge.net/wp/
- Intro to ROS: http://www.ros.org/wiki/ROS/Introduction
What is an agent?

Definition 2 (Wooldridge, p. 21)
An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives

- Adds the notion of free will or intention to agent design
- When explaining human activity, we use statements like the following:
 Janine took her umbrella because she believed it was raining and she wanted to stay dry. (Wooldridge)
- folk psychology used to explain human behavior based on attitudes such as believing, wanting, hoping, fearing, …

The (virtual) agent MAX
MAX, the Multimodal Assembly eXpert:
- developed at the VR and AI group at Bielefeld University since 2003
- since 2007 promoted in the Cluster of Excellence CITEC

Figure: The MAX agent, taken from http://www.excellence-initiative.com/bielefeld-cognitive-interaction-technology
Some applications of multiagent systems: MAX?

Two major areas of application:
▶ Distributed systems (agents as processing nodes)
▶ Personal software assistants (aiding the user)

A variety of subareas:
▶ Workflow/business process management
▶ Distributed sensing
▶ Information retrieval and management
▶ Electronic commerce
▶ Human-computer interfaces
▶ Virtual environments
▶ Social simulation
▶ …

Intentional Systems

Daniel Dennet coined the term intentional system to describe entities “whose behavior can be predicted by the method of attributing belief, desires and rational acumen”. (Dennett, 1987; after Wooldridge, p. 31)

“A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires about beliefs and desires. … A second-order intentional system is more sophisticated; it has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and other intentional states) – both those of others and its own.” (Dennett, 1987, p. 243)

Intentional stance applied to a light switch?

Intentional stance ⇒ ascribing beliefs, free will, intentions, consciousness, abilities or wants to others, even to machines.

“It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capability of transmitting current at will, who invariably transmits current when it believes that we want it transmitted and not otherwise; flicking the switch is simply our way of communicating our desires.”

But: “…it does not buy us anything, since we essentially understand the mechanism sufficiently to have a simpler, mechanistic description of its behavior.” (Yoav Shoham, 1990)

So then, why Agents?

▶ The more we know about a system, the less we need to rely on animistic, intentional explanations of its behavior
▶ But with very complex systems, a mechanistic explanation may not be practicable
▶ Thus, we use intentional notions as abstraction tools providing us with a convenient and familiar way to describe, explain, and predict the behavior of complex systems
▶ Abstractions commonly used in computer science:
 ▶ procedural abstraction
 ▶ abstract data types
 ▶ objects

Agents and agents as intentional systems represent just another powerful abstraction
2.3 Abstract Architectures for Agents

- Standard agents
- State-based agents
- Utility
- Expected Utility
- Special types of tasks

States and Actions

Assume the environment may be in any of a finite set E of discrete, instantaneous states:

$$E = \{e, e', \ldots\}.$$

Agents are assumed to have a repertoire of possible actions available to them, which transform the state of the environment.

$$Ac = \{\alpha, \alpha', \ldots\}.$$

A run, r, of an agent in an environment E is a sequence of interleaved environment states and actions:

$$r: e_0 \xrightarrow{\alpha_0} e_1 \xrightarrow{\alpha_1} e_2 \xrightarrow{\alpha_2} e_3 \xrightarrow{\alpha_3} \ldots \xrightarrow{\alpha_{n-1}} e_n.$$

Runs

Let...

- \mathcal{R} be the set of all such possible finite sequences (over E and Ac);
- \mathcal{R}^Ac be the subset of these that end with an action; and
- \mathcal{R}^E be the subset of these that end with an environment state.

Then the state transformer function τ represents behavior of the environment.

Definition 3: State transformer function τ

The state transformer function τ maps each run $r \in \mathcal{R}^Ac$ to a subset of E (even the empty set):

$$\tau: \mathcal{R}^Ac \rightarrow \mathcal{P}(E).$$

(from runs to environment states)

(with $\mathcal{P}(E)$ denoting the power set of E.)

Environments

An environment Env is then defined as follows:

Definition 4: Environments

An environment Env is given as the triple $Env = (E, e_0, \tau)$ where

- E is the set of environment states,
- $e_0 \in E$ is the initial state, and
- τ is the state transformer function.

Note that environments are:

- history dependent
- non-deterministic

If $\tau(r) = \emptyset$, there are no possible successor states to r, so we say the run has ended.
Abstract Architectures for Agents

Standard agents

Agents

Definition 5: Agent Ag

An agent Ag is a function which maps any run $r \in R^E$ to an action $\alpha \in Ac$:

$Ag : R^E \rightarrow Ac$

(from runs to actions)

- Agents choose actions depending on (environment) states
- With AG defined as the set of all agents, a system is defined as the pair (Ag, Env) with $Ag \in AG$
- Denote runs of a system by $R(Ag, Env)$ and assume they are all terminate (and thus finite)

Behavioral equivalency

Definition 6: Behavioral equivalence

Two agents Ag_1 and Ag_2 are called behavioral equivalent with respect to environment Env iff

$R(Ag_1, Env) = R(Ag_2, Env)$

If this is true for any environment Env, then they are simply called behaviorally equivalent

Putting it all together now

Formally a sequence

$$(e_0, \alpha_0, e_1, \alpha_1, e_2, \ldots)$$

represents a run of agent Ag in environment $Env = (E, e_0, \tau)$ if:

1. e_0 is the initial state of Env
2. $\alpha_0 = Ag(e_0)$; and
3. for $u > 0$,

$e_u \in \tau((e_0, \alpha_0, \ldots, \alpha_{u-1}))$ where

$\alpha_u = Ag((e_0, \alpha_0, \ldots, e_u))$

Purely reactive agents

A purely reactive agent:
- bases its decision only on the present state of the environment
- does not take history into account
- is an example of the “Behaviorist” model of activity, in that actions are solely based on stimulus-response schemata

Definition 7: Purely reactive agent

A purely reactive agent Ag_r maps the current state $e \in E$ to an action $\alpha \in Ac$:

$Ag_r : E \rightarrow Ac$
Abstract Architectures for Agents

Properties of purely reactive agents:

- Every purely reactive agent can be mapped to a standard agent.
- The reverse is usually not true.

Example: (old-style, non-NEST) thermostat

Two environment states \(e_0 = \) "temperature OK" and \(e_1 = \) "temperature not OK"

Ag defined as:

\[
Ag(e) = \begin{cases}
 \text{heater off}, & \text{if } e = e_0 \\
 \text{heater on}, & \text{if } e = e_1
\end{cases}
\]

Perception and action

Agent model so far rather simple, but still many design choices need to be made to achieve concrete agent architectures.

- data structures?
- operations on them?
- control flow?

Do you remember this Figure?

Figure: An agent interacts with an environment through sensors and actuators (after Russel & Norvig, p. 35)

Perception example

- Let \(x = \) 'the room temperature is OK' and \(y = \) 'Merkel is chancellor' be the only two facts that describe environment.
- Then we have \(E = \{ \{ \neg x, \neg y \}, \{ \neg x, y \}, \{ x, \neg y \}, \{ x, y \} \} \)

If percepts of thermostat are \(p_1 \) (too cold) and \(p_2 \) (OK), then indistinguishable states occur (unless Merkel makes room chilly)

\[
\text{see}(e) = \begin{cases}
 p_1, & \text{if } e = e_1 \lor e = e_2 \\
 p_2, & \text{if } e = e_3 \lor e = e_4
\end{cases}
\]

- We write \(e \sim e' \) (equivalence relation over states)
- The coarser these equivalence relations, the less effective is perception (if \(| \sim | = |E|\), then the agent is omniscient).
Perception and actions, state-based agents (1)

Three new functions:

1. the see function, the agent’s ability to perceive its environment

Definition 8: The see function
It maps environment states \(e \in E \) to percepts \(p \in Per \):

\[\text{see} : E \to Per \]

2. the action function to represent the agent’s (internal) decision making

Definition 9: The action function
It maps internal states \(i \in I \) to actions \(\alpha \in Ac \):

\[\text{action} : I \to Ac \]

3. a function next to update the agent’s internal state-based on the current percept

The behavior of a state-based agent is described as follows:

1. The agent starts in some initial state \(e_0 \)
2. After perceiving environment state \(e \) it generates a percept \(p = \text{see}(e) \)
3. Its internal state is updated by \(\text{next}(\iota_0, p) \)
4. Finally, the agent chooses an action calculating the result of \(\text{action} \left(\text{next}(\iota_0, p) \right) \)
5. Loop!

State-based agents

State-based agents are no more expressive than standard agents. They are behaviorally equivalent!(Wooldridge, p. 38)

Perception and actions, state-based agents (2)

Definition 10: The next function
It maps an internal state \(\iota_0 \in I \) and a percept \(p \in Per \) to a new internal state \(\iota_{\text{new}} \in I \):

\[\text{next} : I \times Per \to I \]

Task specification & utility

Agents should perform a task on our behalf:

- Task specified by us
- Tell agent what to do, but not how (exactly)
- How can the agent choose among alternative actions?

⇒ Utility functions over states
The agent has to bring about states that maximize utility. First possibility:

Definition 11: Task specification
A task specification is a function \(u \) associating a real number with every environment state:

\[u : E \to \mathbb{R} \]
Utilities over Runs

With **task specification**, what is the utility of a run?

- minimum utility of visited states?
- maximum utility of visited states?
- Average utility of visited states?
- ...

Better idea:

Definition 12: Utility over Runs

Utility is assigned to runs:

$$u : \mathcal{R} \to \mathbb{R}$$

Takes a long term view and can be extended by incorporating probabilities of different states emerging into account.

Problems with Utility-based Approaches

Certain problems have been discussed in the literature:

- Where do the numbers come from?
- People don’t think in terms of utilities ⇒ difficult to specify tasks in these terms

Nevertheless, certain scenarios can be modeled with utilities.

The Tileworld

- Simulated two dimensional grid environment on which there are agents, tiles, obstacles, and holes.
- Agent can move in four directions, up, down, left, or right.
- If agent is located next to a tile, it can push it.
- Goal: Agent has to fill as many holes with tiles as possible.
- The more holes are filled the higher the score.
- TILEWORLD changes with random appearance and disappearance of holes.

<table>
<thead>
<tr>
<th>HOLE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TILE</td>
<td>↑</td>
<td>TILE</td>
</tr>
</tbody>
</table>

| Ag | TILE | HOLE |

Utility in the Tileworld

Utility function defined as follows:

$$u(r) = \frac{\text{number of holes filled in } r}{\text{number of holes that appeared in } r}$$

Thus:

- If agent fills all holes → utility = 1.
- If agent fills no holes → utility = 0.
Expected Utility of an agent

Let $P(r|\text{Ag}, \text{Env})$ denote the probability that run r occurs when agent Ag is placed in environment Env.

Note:

$$\sum_{r \in R(\text{Ag}, \text{Env})} P(r|\text{Ag}, \text{Env}) = 1$$

Definition 13: Expected utility over runs

The expected utility EU of an agent Ag in environment Env (given P, u) is:

$$EU(\text{Ag}, \text{Env}) = \sum_{r \in R(\text{Ag}, \text{Env})} u(r)P(r|\text{Ag}, \text{Env}).$$

Optimal agents

Now we can define the optimal agent in an environment Env.

Definition 14: The Optimal Agent

The optimal agent Ag_{opt} in an environment Env is defined as the one that maximizes expected utility:

$$Ag_{\text{opt}} = \arg \max_{Ag \in Ag} EU(\text{Ag}, \text{Env})$$

Of course, the fact that it is optimal does not mean it will always be best; only that on average, we can expect it to do best.

Bounded optimal agents

Not every conceivable function $Ag : R^E \rightarrow Ac$ can be implemented on a machine.

\Rightarrow Define the class of bounded optimal agents:

Definition 15: Bounded optimal agents

Let $Ag_m = \{Ag | Ag \in Ag \wedge Ag \text{ implementable on machine } m\}$.

Then the bounded optimal agent, Ag_{bopt}, is defined with respect to m:

$$Ag_{\text{bopt}} = \arg \max_{Ag \in Ag_m} EU(\text{Ag}, \text{Env})$$
Predicate task specifications

Often more natural to define a predicate over runs:

- Idea: only assign success or failure to runs
- Assume \(u \) ranges over \{0, 1\}, then run \(r \in R \) satisfies a task specification if \(u(r) = 1 \), else it fails

Define:

- \(\Psi(r) \) iff \(u(r) = 1 \) and task environment \((Env, \Psi) \) with \(TE \) the set of all task environments
- Let \(R_{\Psi}(Ag, Env) = \{ r \in R(Ag, Env) \wedge \Psi(r) \} \) be the set of runs of agent \(Ag \) that satisfy \(\Psi \)
- \(Ag \) succeeded in task environment \((Env, \Psi) \) iff \(R_{\Psi}(Ag, Env) = R(Ag, Env) \)
- More optimistic, we may just require that \(\exists r \in R(Ag, Env) \) such that \(\Psi(r) \)

Extend state transformer function by probabilities, then:

\[
P(\Psi | Ag, Env) = \sum_{r \in R_{\Psi}(Ag, Env)} P(r | Ag, Env)
\]

Achievement and maintenance tasks

Two very common types of tasks:

- “achieve state of affairs \(\varphi \)”
- “maintain state of affairs \(\varphi \)”

Achievement tasks:

- are defined by a set of good states \(G \subseteq E \).
- The agent succeeds if it is guaranteed to bring about at least one of these states.

Maintenance tasks:

- are defined by a set of bad states \(B \subseteq E \).
- The agent succeeds if it manages to avoid all states in \(B \).

More complex combinations exist.

2.4 Summary

- Discussed intentional stance & agents
- Introduced abstract agent architectures
- Environments, perception & action
- Purely reactive agents & agents with state
- Utility-based agents
- Task-based agents, achievement & maintenance tasks

⇒ Next time: Deductive reasoning agents
Acknowledgments

These lecture slides are partly based on the following slides:

- Dr. Michael Rovatsos, The University of Edinburgh
 http://www.inf.ed.ac.uk/teaching/courses/abs/abs-timetable.html

- Prof. Micheal Wooldridge, University of Oxford