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General information

General information

I Recommended reading:
I Wooldridge, An Introduction to MultiAgent Systems - Second Edition,

Wiley & Sons, 2009.
I Russell & Norvig, Arti�cial Intelligence: A Modern Approach, third

edition, Prentice Hall, 2010.
I Bordini, Hübner, & Wooldridge, Programming Multi-Agent Systems in

AgentSpeak using Jason, Wiley & Sons, 2007

I Software:
I JASON: http://jason.sourceforge.net/wp/
I Intro to ROS: http://www.ros.org/wiki/ROS/Introduction
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General information

Website

Up-to-date information

www.informatik.uni-freiburg.de/�ki/teaching/ss14/multiagent-
systems/

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems 2nd of May 2014 4 / 40

Agents (once again)

2.2 Agents (once again)

Agents as intentional systems
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Agents (once again) Agents as intentional systems

What is an agent?

De�nition 2 (Wooldridge, p. 21)

An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to
meet its design objectives

I Adds the notion of free will or intention to agent design

I When explaining human activity, we use statements like the following:

Janine took her umbrella because she believed it was raining
and she wanted to stay dry. (Wooldridge)

I folk psychology used to explain human behavior based on attitudes

such as believing, wanting, hoping, fearing, . . .
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Agents (once again) Agents as intentional systems

The (virtual) agent MAX
MAX, the Multimodal Assembly eXpert:

I developed at the VR and AI group at Bielefeld University since 2003

I since 2007 promoted in the Cluster of Excellence CITEC

Figure: The MAX agent, taken from http://www.excellence-initiative.

com/bielefeld-cognitive-interaction-technology
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Agents (once again) Agents as intentional systems

Some applications of multiagent systems: MAX?

Two major areas of application:

I Distributed systems (agents as processing nodes)

I Personal software assistants (aiding the user)

A variety of subareas:

I Work�ow/business process management

I Distributed sensing

I Information retrieval and management

I Electronic commerce

I Human-computer interfaces

I Virtual environments

I Social simulation

I . . .
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Agents (once again) Agents as intentional systems

Intentional Systems

Daniel Dennet coined the term intentional system to describe entities
�whose behavior can be predicted by the method of attributing belief,
desires and rational acumen�.
(Dennett, 1987; after Wooldridge, p. 31)

�A �rst-order intentional system has beliefs and desires (etc.) but no beliefs
and desires about beliefs and desires. . . . A second-order intentional system
is more sophisticated; it has beliefs and desires (and no doubt other
intentional states) about beliefs and desires (and other intentional states) �
both those of others and its own.� (Dennet, 1987, p. 243)
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Agents (once again) Agents as intentional systems

Intentional stance applied to a light switch?

Intentional stance ⇒ ascribing beliefs, free will, intentions,

consciousness, abilities or wants to others, even to machines.

�It is perfectly coherent to treat a light switch as a (very cooperative) agent
with the capability of transmitting current at will, who invariably transmits
current when it believes that we want it transmitted and not otherwise;
�icking the switch is simply our way of communicating our desires.�
But: �. . . it does not buy us anything, since we essentially understand the
mechanism su�ciently to have a simpler, mechanistic description of its
behavior.� (Yoav Shoham, 1990)
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Agents (once again) Agents as intentional systems

So then, why Agents?

I The more we know about a system, the less we need to rely on
animistic, intentional explanations of its behavior

I But with very complex systems, a mechanistic explanation may not be
practicable

I Thus, we use intentional notions as abstraction tools providing us
with a convenient and familiar way to describe, explain, and predict
the behavior of complex systems

I Abstractions commonly used in computer science:
I procedural abstraction
I abstract data types
I objects

Agents and agents as intentional systems represent just another
powerful abstraction
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Abstract Architectures for Agents

2.3 Abstract Architectures for Agents

Standard agents
State-based agents
Utility
Expected Utility
Special types of tasks
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Abstract Architectures for Agents Standard agents

States and Actions

Assume the environment may be in any of a �nite set E of discrete,
instantaneous states:

E = {e, e ′, . . .}.

Agents are assumed to have a repertoire of possible actions available to
them, which transform the state of the environment.

Ac = {α, α′, . . .}

A run, r , of an agent in an environment E is a sequence of interleaved
environment states and actions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ · · · αu−1−−−→ eu
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Abstract Architectures for Agents Standard agents

Runs

Let . . .

I R be the set of all such possible �nite sequences (over E and Ac);

I RAc be the subset of these that end with an action; and

I RE be the subset of these that end with an environment state.

Then the state transformer function τ represents behavior of the
environment.

De�nition 3: State transformer function τ
The state transformer function τ maps each run r ∈ RAc to a subset of E
(even the empty set):

τ : RAc → P(E )

(from runs to environment states)

(with P(E) denoting the power set of E .)
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Abstract Architectures for Agents Standard agents

Environments

An environment Env is then de�ned as follows:

De�nition 4: Environments
An environment Env is given as the triple Env = 〈E , e0, τ〉 where

I E is the set of environment states,

I e0 ∈ E is the initial state, and

I τ is the state transformer function.

Note that environments are:

I history dependent

I non-deterministic

If τ(r) = ∅, there are no possible successor states to r , so we say the run
has ended.
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Abstract Architectures for Agents Standard agents

Agents

De�nition 5: Agent Ag

An agent Ag is a function which maps any run r ∈ RE to an action
α ∈ Ac :

Ag : RE → Ac

(from runs to actions)

I Agents choose actions depending on (environment) states

I With AG de�ned as the set of all agents, a system is de�ned as the
pair (Ag ,Env) with Ag ∈ AG

I Denote runs of a system by R(Ag ,Env) and assume they are all
terminate (and thus �nite)
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Abstract Architectures for Agents Standard agents

Behavioral equivalency

De�nition 6: Behavioral equivalence

Two agents Ag1 and Ag2 are called behavioral equivalent with respect to
environment Env i�

R(Ag1,Env) = R(Ag2,Env)

If this is true for any environment Env , then they are simply called
behaviorally equivalent
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Abstract Architectures for Agents Standard agents

Putting it all together now

Formally, a sequence
(eo , α0, e1, α1, e2, . . .)

represents a run of agent Ag in environment Env = 〈E , e0, τ〉 if:
1. e0 is the initial state of Env

2. α0 = Ag(e0); and

3. for u > 0,

eu ∈ τ((eo , α0, . . . , αu−1)) where

αu = Ag((e0, α0, . . . , eu))
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Abstract Architectures for Agents Standard agents

Purely reactive agents

A purely reactive agent:

I bases its decision only on the present state of the environment

I does not take history into account

I is an example of the �Behaviorist� model of activity, in that actions are
solely based on stimulus-response schemata

De�nition 7: Purely reactive agent

A purely reactive agent Ag r maps the current state e ∈ E to an action
α ∈ Ac :

Agr : E → Ac
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Abstract Architectures for Agents Standard agents

Purely reactive agent example

Properties of purely reactive agents:

I Every purely reactive agent can be mapped to an agent de�ned on
runs, i.e. a standard agent

I The reverse is usually not true

Example: (old-style, non-NEST) thermostat

I Two environment states e0 = "temperature OK" and
e1 = "temperature not OK"

I Ag de�ned as:

Ag(e) =

{
heater o�, if e = e0

heater on, if e = e1
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Abstract Architectures for Agents State-based agents

Perception and action
Agent model so far rather simple, but still many design choices need to be
made to achieve concrete agent architectures

I data structures?
I operations on them?
I control �ow?

Do you remember this Figure?

Figure: An agents interacts with an environment through sensors and actuators
(after Russel & Norvig, p. 35)
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Abstract Architectures for Agents State-based agents

Perception

Perception can be modeled as follows:

I De�ne function see : E → Per and action : Per∗ → Ac where:
I Per is non-empty set of percepts that the agent can obtain through its

sensors
I see describes process of perception and action de�nes decisions based

on percept sequences

I Agent de�nition now becomes Ag = 〈see, action〉
If e1 6= e2 ∈ E and see(e1) = see(e2) we call e1 and e2 indistinguishable
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Abstract Architectures for Agents State-based agents

Perception example

I Let x = 'the room temperature is OK' and y = 'Merkel is chancelor'
be the only two facts that describe environment

I Then we have E = {{¬x ,¬y}︸ ︷︷ ︸
e1

, {¬x , y}︸ ︷︷ ︸
e2

, {x ,¬y}︸ ︷︷ ︸
e3

, {x , y}︸ ︷︷ ︸
e4

}

I If percepts of thermostat are p1 (too cold) and p2 (OK), then
indistinguishable states occur (unless Merkel makes room chilly)

see(e) =

{
p1, if e = e1 ∨ e = e2

p2, if e = e3 ∨ e = e4

I We write e ∼ e ′ (equivalence relation over states)

I The coarser these equivalence relations, the less e�ective is perception
(if | ∼ | = |E |, then the agent is omniscient)
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Perception and action, state-based agents (1)

Three new functions:

1. the see function, the agent's ability to perceive its environment

De�nition 8: The see function
It maps environment states e ∈ E to percepts p ∈ Per :

see : E → Per

2. the action function to represent the agent's (internal) decision making

De�nition 9: The action function
It maps internal states i ∈ I to actions α ∈ Ac :

action : I → Ac

3. a function next to update the agent's internal state-based on the
current percept
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Abstract Architectures for Agents State-based agents

Perception and actions, state-based agents (2)

De�nition 10: The next function
It maps an internal state iold ∈ I and a percept p ∈ Per to a new internal
state inew ∈ I : next : I × Per → I

The behavior of a state-based agent is described as follows:

1. The agent starts in some initial state e0

2. After perceiving environment state e it generates a percept p = see(e)

3. Its internal state is updated by next(i0, p)

4. Finally, the agent chooses an action calculating the result of
action(next(i0, p))

5. Loop!
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Abstract Architectures for Agents State-based agents

State-based agents

Figure: An agent that maintains a state (after Wooldrige, p. 37, and Russel &
Norvig, p. 35)

⇒ State-based agents are no more expressive than standard agents.
They are behaviorally equivalent!
(Wooldridge, p. 38)
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Abstract Architectures for Agents Utility

Task speci�cation & utility

Agents should perform a task on our behalf:

I Task speci�ed by us

I Tell agent what to do, but not how (exactly)

I How can the agent choose among alternative actions?

⇒ Utility functions over states
The agent has to bring about states that maximize utility.
First possibility:

De�nition 11: Task speci�cation

A task speci�cation is a function u associating a real number with every
environment state:

u : E → R

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems 2nd of May 2014 27 / 40



Abstract Architectures for Agents Utility

Utilities over Runs

With task speci�cation, what is the utility of a run?

I minimum utility of visited states?

I maximum utility of visited states?

I Average utility of visited states?

I . . .

Better idea:

De�nition 12: Utility over Runs

Utility is assigned to runs:
u : R → R

Takes a long term view and can be extended by incorporating
probabilities of di�erent states emerging into account.
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Abstract Architectures for Agents Utility

Problems with Utility-based Approaches

Certain problems have been discussed in the literature:

I Where do the numbers come from?

I People don't think in terms of utilities ⇒ di�cult to specify tasks in
these terms

Nevertheless, certain scenarios can be modeled with utilities.
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Abstract Architectures for Agents Utility

The Tileworld

I Simulated two dimensional grid environment on which there are
agents, tiles, obstacles, and holes.

I Agent can move in four directions, up, down, left, or right.

I If agent is located next to a tile, it can push it.

I Goal: Agent has to �ll as many holes with tiles as possible.

I The more holes are �lled the higher the score.

I TILEWORLD changes with random appearance and disappearance of
holes.

HOLE

↑
TILE

Ag TILE HOLE
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Abstract Architectures for Agents Utility

Utility in the Tileworld

Utility function de�ned as follows:

u(r) =
number of holes �lled in r

number of holes that appeared in r

Thus:

I If agent �lls all holes → utility = 1.

I If agent �lls no holes → utility = 0.
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Expected Utility of an agent

Let P(r |Ag ,Env) denote the probability that run r occurs when agent Ag
is placed in environment Env .
Note: ∑

r∈R(Ag ,Env)

P(r |Ag ,Env) = 1

De�nition 13: Expected utility over runs

The expected utility EU of an agent Ag in environment Env (given P , u) is:

EU(Ag ,Env) =
∑

r∈R(Ag ,Env)

u(r)P(r |Ag ,Env).
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Abstract Architectures for Agents Expected Utility

Give example on blackboard
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Abstract Architectures for Agents Expected Utility

Optimal agents

Now we can de�ne the optimal agent in an environment Env .

De�nition 14: The Optimal Agent

The optimal agent Agopt in an environment Env is de�ned as the one that
maximizes expected utility:

Agopt = arg max
Ag∈AG

EU(Ag ,Env)

Of course, the fact that it is optimal does not mean it will always be best;
only that on average, we can expect it to do best.
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Abstract Architectures for Agents Expected Utility

Bounded optimal agents

Not every conceivable function Ag : RE → Ac can be implemented on a
machine.
⇒ De�ne the class of bounded optimal agents:

De�nition 15: Bounded optimal agents

Let
AGm = {Ag |Ag ∈ AG ∧ Ag implementable on machine m}.
Then the bounded optimal agent, Agbopt , is de�ned with respect to m:

Agbopt = arg max
Ag∈AGm

EU(Ag ,Env)
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Predicate task speci�cations
Often more natural to de�ne a predicate over runs:

I Idea: only assign success or failure to runs
I Assume u ranges over {0, 1}, then run r ∈ R satis�es a task

speci�cation if u(r) = 1, else it fails

De�ne:
I Ψ(r) i� u(r) = 1 and task environment 〈Env ,Ψ〉 with T E the set

of all task environments
I Let RΨ(Ag ,Env) = {r |r ∈ R(Ag ,Env) ∧Ψ(r)} be the set of runs of

agent Ag that satisfy Ψ
I Ag succeeded in task environment 〈Env ,Ψ〉 i�
RΨ(Ag ,Env) = R(Ag ,Env)

I More optimistic, we may just require that ∃r ∈ R(Ag ,Env) such that
Ψ(r)

Extend state transformer function by probabilities, then:

P(Ψ|Ag ,Env) =
∑

r∈RΨ(Ag ,Env)

P(r |Ag ,Env)
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Abstract Architectures for Agents Special types of tasks

Achievement and maintenance tasks

Two very common types of tasks:

I �achieve state of a�airs ϕ�

I �maintain state of a�airs ϕ�

Achievement tasks:

I are de�ned by a set of good states G ⊆ E .

I The agent succeeds if it is guaranteed to bring about at least one of
these states.

Maintenance tasks:

I are de�ned by a set of bad states B ⊆ E .

I The agent succeeds if it manages to avoid all states in B.
More complex combinations exist.
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2.4 Summary

Thanks
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Summary

Summary

I Discussed intentional stance & agents

I Introduced abstract agent architectures

I Environments, perception & action

I Purely reactive agents & agents with state

I Utility-based agents

I Task-based agents, achievement & maintenance tasks

⇒ Next time: Deductive reasoning agents
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