Multiagent Systems

2. Abstract Architectures for Agents

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

2nd of May 2014

Multiagent Systems

2nd of May 2014 — 2. Abstract Architectures for Agents

- 2.1 General information
- 2.2 Agents (once again)
- 2.3 Abstract Architectures for Agents
- 2.4 Summary

2.1 General information

General information

- Recommended reading:
 - Wooldridge, An Introduction to MultiAgent Systems Second Edition, Wiley & Sons, 2009.
 - Russell & Norvig, Artificial Intelligence: A Modern Approach, third edition, Prentice Hall, 2010.
 - ► Bordini, Hübner, & Wooldridge, Programming Multi-Agent Systems in AgentSpeak using Jason, Wiley & Sons, 2007
- Software:
 - ▶ JASON: http://jason.sourceforge.net/wp/
 - ▶ Intro to ROS: http://www.ros.org/wiki/ROS/Introduction

Website

 $\label{lem:condition} $$ www.informatik.uni-freiburg.de/~ki/teaching/ss14/multiagent-systems/$

2.2 Agents (once again)

Agents as intentional systems

What is an agent?

Definition 2 (Wooldridge, p. 21)

An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives

- ▶ Adds the notion of free will or intention to agent design
- When explaining human activity, we use statements like the following: Janine took her umbrella because she believed it was raining and she wanted to stay dry. (Wooldridge)
- ► folk psychology used to explain human behavior based on attitudes such as believing, wanting, hoping, fearing, ...

The (virtual) agent MAX

MAX, the Multimodal Assembly eXpert:

- developed at the VR and Al group at Bielefeld University since 2003
- since 2007 promoted in the Cluster of Excellence CITEC

Figure: The MAX agent, taken from http://www.excellence-initiative.com/bielefeld-cognitive-interaction-technology

Some applications of multiagent systems: MAX?

Two major areas of application:

- Distributed systems (agents as processing nodes)
- Personal software assistants (aiding the user)

A variety of subareas:

- Workflow/business process management
- Distributed sensing
- Information retrieval and management
- Electronic commerce
- Human-computer interfaces
- Virtual environments
- Social simulation

Intentional Systems

Daniel Dennet coined the term intentional system to describe entities "whose behavior can be predicted by the method of attributing belief, desires and rational acumen".

(Dennett, 1987; after Wooldridge, p. 31)

"A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires about beliefs and desires. ... A second-order intentional system is more sophisticated; it has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and other intentional states) – both those of others and its own." (Dennet, 1987, p. 243)

Intentional stance applied to a light switch?

Intentional stance ⇒ ascribing beliefs, free will, intentions, consciousness, abilities or wants to others, even to machines.

"It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capability of transmitting current at will, who invariably transmits current when it believes that we want it transmitted and not otherwise; flicking the switch is simply our way of communicating our desires."

But: "...it does not buy us anything, since we essentially understand the mechanism sufficiently to have a simpler, mechanistic description of its behavior." (Yoav Shoham, 1990)

So then, why Agents?

- ► The more we know about a system, the less we need to rely on animistic, intentional explanations of its behavior
- ▶ But with very complex systems, a mechanistic explanation may not be practicable
- ► Thus, we use intentional notions as abstraction tools providing us with a convenient and familiar way to describe, explain, and predict the behavior of complex systems
- Abstractions commonly used in computer science:
 - procedural abstraction
 - abstract data types
 - objects

Agents and agents as intentional systems represent just another powerful abstraction

2.3 Abstract Architectures for Agents

- Standard agents
- State-based agents
- Utility
- Expected Utility
- Special types of tasks

States and Actions

Assume the environment may be in any of a finite set E of discrete, instantaneous states:

$$E=\{e,e',\ldots\}.$$

Agents are assumed to have a repertoire of possible actions available to them, which transform the state of the environment.

$$Ac = \{\alpha, \alpha', \ldots\}$$

A run, r, of an agent in an environment E is a sequence of interleaved environment states and actions:

$$r: e_0 \xrightarrow{\alpha_0} e_1 \xrightarrow{\alpha_1} e_2 \xrightarrow{\alpha_2} e_3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{u-1}} e_u$$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Freehlbuutnige) gent Systems

Runs

Let ...

- \triangleright \mathcal{R} be the set of all such possible finite sequences (over E and Ac);
- \triangleright \mathcal{R}^{Ac} be the subset of these that end with an action; and
- $\triangleright \mathcal{R}^E$ be the subset of these that end with an environment state.

Then the state transformer function τ represents behavior of the environment.

Definition 3: State transformer function τ

The state transformer function τ maps each run $r \in \mathcal{R}^{Ac}$ to a subset of E (even the empty set):

$$\tau: \mathcal{R}^{Ac} \to \mathcal{P}(E)$$

(from runs to environment states)

(with $\mathcal{P}(E)$ denoting the **power set** of E.)

An environment *Env* is then defined as follows:

Definition 4: Environments

An environment Env is given as the triple $Env = \langle E, e_0, \tau \rangle$ where

- ► E is the set of environment states,
- $ightharpoonup e_0 \in E$ is the initial state, and
- $\triangleright \tau$ is the state transformer function.

Note that environments are:

- history dependent
- non-deterministic

If $\tau(r) = \emptyset$, there are no possible successor states to r, so we say the run has ended.

Agents

Definition 5: Agent Ag

An agent Ag is a function which maps any run $r \in \mathcal{R}^E$ to an action $\alpha \in Ac$:

$$Ag: \mathcal{R}^E \to Ac$$

(from runs to actions)

- ▶ Agents choose actions depending on (environment) states
- ▶ With AG defined as the set of all agents, a system is defined as the pair (Ag, Env) with $Ag \in AG$
- ▶ Denote runs of a system by $\mathcal{R}(Ag, Env)$ and assume they are all terminate (and thus finite)

Behavioral equivalency

Definition 6: Behavioral equivalence

Two agents Ag_1 and Ag_2 are called **behavioral equivalent** with respect to environment Env iff

$$\mathcal{R}(Ag_1, Env) = \mathcal{R}(Ag_2, Env)$$

If this is true for any environment Env, then they are simply called behaviorally equivalent

Putting it all together now

Formally, a sequence

$$(e_o, \alpha_0, e_1, \alpha_1, e_2, \ldots)$$

represents a run of agent Ag in environment $Env = \langle E, e_0, \tau \rangle$ if:

- 1. e_0 is the initial state of Env
- 2. $\alpha_0 = Ag(e_0)$; and
- 3. for u > 0.

$$e_u \in \tau((e_o, \alpha_0, \dots, \alpha_{u-1}))$$
 where $\alpha_u = Ag((e_0, \alpha_0, \dots, e_u))$

18 / 40

Purely reactive agents

A purely reactive agent:

- bases its decision only on the present state of the environment
- does not take history into account
- ▶ is an example of the "Behaviorist" model of activity, in that actions are solely based on stimulus-response schemata

Definition 7: Purely reactive agent

A purely reactive agent Ag_r maps the current state $e \in E$ to an action $\alpha \in Ac$:

$$Ag_r: E \rightarrow Ac$$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Fredhoutings)gent Systems

Purely reactive agent example

Properties of purely reactive agents:

- Every purely reactive agent can be mapped to an agent defined on runs, i.e. a standard agent
- The reverse is usually not true

Example: (old-style, non-NEST) thermostat

- ▶ Two environment states $e_0 =$ "temperature OK" and $e_1 =$ "temperature not OK"
- Ag defined as:

$$Ag(e) = \begin{cases} \text{heater off,} & \text{if } e = e_0 \\ \text{heater on,} & \text{if } e = e_1 \end{cases}$$

Perception and action

Agent model so far rather simple, but still many design choices need to be made to achieve concrete agent architectures

- data structures?
- operations on them?
- control flow?

Do you remember this Figure?

Figure: An agents interacts with an environment through sensors and actuators (after Russel & Norvig, p. 35)

Perception

Perception can be modeled as follows:

- ▶ Define function see : $E \rightarrow Per$ and action : $Per^* \rightarrow Ac$ where:
 - ► Per is non-empty set of **percepts** that the agent can obtain through its sensors
 - see describes process of perception and action defines decisions based on percept sequences
- ▶ Agent definition now becomes $Ag = \langle see, action \rangle$

If $e_1 \neq e_2 \in E$ and $see(e_1) = see(e_2)$ we call e_1 and e_2 indistinguishable

Perception example

- ▶ Let x = 'the room temperature is OK' and y = 'Merkel is chancelor' be the only two facts that describe environment
- ▶ Then we have $E = \{\underbrace{\{\neg x, \neg y\}}_{e_1}, \underbrace{\{\neg x, y\}}_{e_2}, \underbrace{\{x, \neg y\}}_{e_3}, \underbrace{\{x, y\}}_{e_4}\}$
- ▶ If percepts of thermostat are p₁ (too cold) and p₂ (OK), then indistinguishable states occur (unless Merkel makes room chilly)

$$see(e) = egin{cases} p_1, & ext{if } e = e_1 \lor e = e_2 \ p_2, & ext{if } e = e_3 \lor e = e_4 \end{cases}$$

- We write $e \sim e'$ (equivalence relation over states)
- ► The coarser these equivalence relations, the less effective is perception (if $|\sim|=|E|$, then the agent is omniscient)

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Fr**Mib**uutnige)gent Systems

Perception and action, state-based agents (1)

Three new functions:

1. the see function, the agent's ability to perceive its environment

Definition 8: The see function

It maps environment states $e \in E$ to percepts $p \in Per$:

 $see: E \rightarrow Per$

2. the action function to represent the agent's (internal) decision making

Definition 9: The action function

It maps internal states $i \in I$ to actions $\alpha \in Ac$:

action : $I \rightarrow Ac$

3. a function *next* to update the agent's internal state-based on the current percept

Perception and actions, state-based agents (2)

Definition 10: The *next* function

It maps an internal state $i_{old} \in I$ and a percept $p \in Per$ to a new internal state $i_{new} \in I$: next: $I \times Per \rightarrow I$

The behavior of a state-based agent is described as follows:

- 1. The agent starts in some initial state e_0
- 2. After perceiving environment state e it generates a percept p = see(e)
- 3. Its internal state is updated by $next(i_0, p)$
- 4. Finally, the agent chooses an action calculating the result of $action(next(i_0, p))$
- Loop!

State-based agents

Figure: An agent that maintains a state (after Wooldrige, p. 37, and Russel & Norvig, p. 35)

⇒ State-based agents are no more expressive than standard agents. They are behaviorally equivalent! (Wooldridge, p. 38)

Task specification & utility

Agents should perform a task on our behalf:

- Task specified by us
- ► Tell agent what to do, but not how (exactly)
- How can the agent choose among alternative actions?
- ⇒ Utility functions over states

The agent has to bring about states that maximize utility.

First possibility:

Definition 11: Task specification

A task specification is a function u associating a real number with every environment state:

$$u: E \to \mathbb{R}$$

Utilities over Runs

With task specification, what is the utility of a run?

- minimum utility of visited states?
- maximum utility of visited states?
- Average utility of visited states?

Better idea:

Definition 12: Utility over Runs

Utility is assigned to runs:

$$u:\mathcal{R} \to \mathbb{R}$$

Takes a long term view and can be extended by incorporating probabilities of different states emerging into account.

Problems with Utility-based Approaches

Certain problems have been discussed in the literature:

- Where do the numbers come from?
- ightharpoonup People don't think in terms of utilities \Rightarrow difficult to specify tasks in these terms

Nevertheless, certain scenarios can be modeled with utilities.

The Tileworld

- Simulated two dimensional grid environment on which there are agents, tiles, obstacles, and holes.
- Agent can move in four directions, up, down, left, or right.
- ▶ If agent is located next to a tile, it can push it.
- Goal: Agent has to fill as many holes with tiles as possible.
- The more holes are filled the higher the score.
- ► TILEWORLD changes with random appearance and disappearance of holes.

HOLE		
↑		
TILE		
Ag	TILE	HOLE

Utility in the Tileworld

Utility function defined as follows:

$$u(r) = \frac{\text{number of holes filled in } r}{\text{number of holes that appeared in } r}$$

Thus:

- ▶ If agent fills all holes \rightarrow utility = 1.
- ▶ If agent fills **no** holes \rightarrow utility = 0.

Let P(r|Ag, Env) denote the probability that run r occurs when agent Agis placed in environment *Env*.

Note:

$$\sum_{r \in \mathcal{R}(Ag, Env)} P(r|Ag, Env) = 1$$

Definition 13: Expected utility over runs

The expected utility EU of an agent Ag in environment Env (given P, u) is:

$$EU(Ag, Env) = \sum_{r \in \mathcal{R}(Ag, Env)} u(r)P(r|Ag, Env).$$

Give example on blackboard

Optimal agents

Now we can define the optimal agent in an environment Env.

Definition 14: The Optimal Agent

The optimal agent Ag_{opt} in an environment Env is defined as the one that maximizes expected utility:

$$Ag_{opt} = arg \max_{Ag \in \mathcal{AG}} EU(Ag, Env)$$

Of course, the fact that it is **optimal** does not mean it **will** always be best; only that **on average**, we can expect it to do best.

Not every conceivable function $Ag: \mathcal{R}^E \to Ac$ can be implemented on a machine.

 \Rightarrow Define the class of bounded optimal agents:

Definition 15: Bounded optimal agents

Let

 $\mathcal{AG}_m = \{Ag | Ag \in AG \land Ag \text{ implementable on machine } m\}.$

Then the **bounded optimal agent**, Ag_{bopt} , is defined with respect to m:

$$Ag_{bopt} = arg \max_{Ag \in AG_m} EU(Ag, Env)$$

Predicate task specifications

Often more natural to define a predicate over runs:

- ▶ Idea: only assign success or failure to runs
- Assume u ranges over $\{0,1\}$, then run $r \in \mathcal{R}$ satisfies a task specification if u(r) = 1, else it fails

Define:

- ▶ $\Psi(r)$ iff u(r) = 1 and task environment $\langle Env, \Psi \rangle$ with \mathcal{TE} the set of all task environments
- ▶ Let $\mathcal{R}_{\Psi}(Ag, Env) = \{r | r \in \mathcal{R}(Ag, Env) \land \Psi(r)\}$ be the set of runs of agent Ag that satisfy Ψ
 - ► Ag succeeded in task environment $\langle Env, \Psi \rangle$ iff $\mathcal{R}_{\Psi}(Ag, Env) = \mathcal{R}(Ag, Env)$
 - More **optimistic**, we may just require that $\exists r \in \mathcal{R}(Ag, Env)$ such that $\Psi(r)$

Extend state transformer function by probabilities, then:

$$P(\Psi|Ag, Env) = \sum_{r \in \mathcal{R}_{\Psi}(Ag, Env)} P(r|Ag, Env)$$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Fr**Mib**uutnige)gent Systems

Achievement and maintenance tasks

Two very common types of tasks:

- "achieve state of affairs φ "
- "maintain state of affairs φ "

Achievement tasks:

- ▶ are defined by a set of **good states** $\mathcal{G} \subseteq E$.
- ➤ The agent succeeds if it is guaranteed to bring about at least one of these states.

Maintenance tasks:

- ▶ are defined by a set of **bad states** $\mathcal{B} \subseteq E$.
- ▶ The agent succeeds if it manages to avoid all states in \mathcal{B} .

More complex combinations exist.

2.4 Summary

■ Thanks

Summary

- Discussed intentional stance & agents
- Introduced abstract agent architectures
- Environments, perception & action
- ► Purely reactive agents & agents with state
- Utility-based agents
- Task-based agents, achievement & maintenance tasks
- ⇒ Next time: Deductive reasoning agents

Acknowledgments

These lecture slides are partly based on the following slides:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- Prof. Micheal Wooldridge, University of Oxford http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/ imas/distrib/pdf-index.html