0. Organization

Lectures & tutorials: when and where

Lectures
Wednesday, 4pm c.t.-6pm, and Friday, 2pm c.t.-3pm
Building 051, HS 02-026

Tutorials
Friday, 3pm c.t.-4pm
TBA

Pfingstpause
10th of June until 14th of June 2014

Last lecture/tutorial
1st of August 2014
Website

www.informatik.uni-freiburg.de/~ki/teaching/ss14/multiagent-systems

Lecturer

Prof. Dr. Bernhard Nebel
Büro: Gebäude 052, Raum 00-029
Telefon: 0761/203-8221
E-mail: nebel@uni-freiburg.de
Web: www.informatik.uni-freiburg.de/~nebel
Sprechstunde: Di 12-13 Uhr und nach Vereinbarung (E-mail)

Assistants

Dr. Christian Becker-Asano
Büro: Gebäude 052, Raum 00-042
Telefon: 0761/203-8251
E-mail: basano@informatik.uni-freiburg.de
Web: www.informatik.uni-freiburg.de/~basano
Sprechstunde: Di 13-14 Uhr und nach Vereinbarung (E-mail)

Dr. Stefan Wölfl
Büro: Gebäude 052, Raum 00-043
Telefon: 0761/203-8228
E-mail: woei1f@informatik.uni-freiburg.de
Web: www.informatik.uni-freiburg.de/~woeif
Sprechstunde: Di 13-14 Uhr und nach Vereinbarung (E-mail)

Tutors

Andreas Hertle
Büro: Gebäude 052, Raum 00-045
Telefon: 0761/203-8219
E-mail: hertle@informatik.uni-freiburg.de
Web: www.informatik.uni-freiburg.de/~hertle
Sprechstunde: Di 13-14 Uhr und nach Vereinbarung (E-mail)

Dr. Christian Becker-Asano
Büro: Gebäude 052, Raum 00-042
Telefon: 0761/203-8251
E-mail: basano@informatik.uni-freiburg.de
Web: www.informatik.uni-freiburg.de/~basano
Sprechstunde: Di 13-14 Uhr und nach Vereinbarung (E-mail)
Tutorials (Übungen)

▶ At least one hour tutorial per week, sometimes two hours
▶ Tutorials start on Friday, May 9th
▶ Participation strongly encouraged
▶ Sign up by internet (HIS-LSF or HIS-QIS)
▶ Friday, May 2nd: lecture

Exercise sheets

▶ New exercise sheets on Fridays, watch the website
▶ Hand in solutions on Friday, before 2pm
▶ Solutions can be given in English and German
▶ Students can work in pairs and hand in one solution
▶ Larger groups and copied results will not be accepted

Examination

▶ An oral or written examination takes place in the semester break.
▶ The examination is obligatory for all Bachelor/Master/ACS Master students.
▶ Admission to the exam: necessary to have reached at least 50% of the points on exercises and implementation projects.

Course prerequisites & goals

Goals
▶ Acquiring skills in the modelling of MAS
▶ Understanding the basic principles behind current MAS technologies
▶ Being able to read and understand research literature in the area of MAS
▶ Being able to complete a project in this research area

Prerequisites
▶ Basic knowledge of AI techniques
▶ Basic knowledge in OOP/Java
Topics of the lecture

▶ Organization & Introduction to MAS
▶ Abstract agent architectures
▶ Deductive reasoning agents
▶ Practical reasoning agents
▶ Reactive and hybrid agent architectures
▶ Logics for multiagent systems
▶ Agent communication & ontologies
▶ Multiagent interactions
▶ Social choice
▶ Coalition formation
▶ Resource allocation
▶ etc.

Acknowledgments/Resources

The lecture slides are partly based on slides developed by Dr. Michael Rovatsos, The University of Edinburgh, for his lecture on “Agent-based systems” used with permission.

Literature