Knowledge Representation and Reasoning

- Often, our agents need **knowledge** before they can start to act intelligently.
- They then also need some **reasoning component** to exploit the knowledge they have.
- **Examples:**
 - Knowledge about the important **concepts** in a domain
 - Knowledge about **actions** one can perform in a domain
 - Knowledge about **temporal relationships** between events
 - Knowledge about the world and how properties are related to actions
Categories and Objects

- We need to describe the objects in our world using categories.
- Necessary to establish a common category system for different applications (in particular on the web).
- There are a number of quite general categories everybody and every application uses.
The Upper Ontology: A General Category Hierarchy

- **AbstractObjects**
 - Sets
 - Numbers
 - RepresentationalObjects
 - Categories
 - Sentences
 - Measurements
 - Times
 - Weights

- **GeneralizedEvents**
 - Interval
 - Places
 - PhysicalObjects
 - Processes
 - Things
 - Stuff
 - Animals
 - Agents
 - Solid
 - Liquid
 - Gas
 - Humans

Anything
- How to describe more specialized things?

- Use definitions and/or necessary conditions referring to other already defined concepts:

 A parent is a human with at least one child.

- More complex description:

 A proud-grandmother is a human, which is female with at least two children that are in turn parents whose children are all doctors.
Typical questions of interest:

- **Subsumption**: Determine whether one description is more general than (subsumes) the other

- **Classification**: Create a subsumption hierarchy

- **Satisfiability**: Is a description satisfiable?

- **Instance relationship**: Is a given object instance of a concept description?

- **Instance retrieval**: Retrieve all objects for a given concept description
Special Properties of Description Logics

- Semantics of description logics (DLs) can be given using ordinary PL1
- Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
function KB-AGENT(\textit{percept}) \textbf{returns} an action

\textbf{persistent}: \textit{KB}, a knowledge base
\hspace{1em} \textit{t}, a counter, initially 0, indicating time

\textbf{Tell}(\textit{KB}, \textbf{Make-Percept-Sentence}(\textit{percept}, \textit{t}))
\textit{action} \leftarrow \textbf{Ask}(\textit{KB}, \textbf{Make-Action-Query}(\textit{t}))
\textbf{Tell}(\textit{KB}, \textbf{Make-Action-Sentence}(\textit{action}, \textit{t}))
\textit{t} \leftarrow \textit{t} + 1
\textbf{return} \textit{action}

Query (\textbf{Make-Action-Query}): \exists \textit{x}\textit{Action}(\textit{x}, \textit{t})

A variable assignment for \textit{x} in the WUMPUS world example should give the following answers: turn(\textit{right}), turn(\textit{left}), forward, shoot, grab, release, climb.
Reflex Agents

... only react to percepts.

Example of a percept statement (at time 5):

\[\text{Percept}(\text{stench}, \text{breeze}, \text{glitter}, \text{none}, \text{none}, 5) \]

1. \[\forall b, g, u, c, t [\text{Percept}(\text{stench}, b, g, u, c, t) \implies \text{Stench}(t)] \]

\[\forall s, g, u, c, t [\text{Percept}(s, \text{breeze}, g, u, c, t) \implies \text{Breeze}(t)] \]

\[\forall s, b, g, u, c, t [\text{Percept}(s, b, \text{glitter}, u, c, t) \implies \text{AtGold}(t)] \]

...

2. Step: Choice of action

\[\forall t [\text{AtGold}(t) \implies \text{Action}(\text{grab}, t)] \]

...

Note: Our reflex agent does not know when it should climb out of the cave and cannot avoid an infinite loop.
Model-Based Agents

... have an internal model
- of all basic aspects of their environment,
- of the executability and effects of their actions,
- of further basic laws of the world, and
- of their own goals.

Important aspect: How does the world change?

→ Situation calculus: (McCarthy, 63).
Situation Calculus

- A way to describe dynamic worlds with PL1.
- States are represented by terms.
- The world is in state s and can only be altered through the execution of an action: $do(a, s)$ is the resulting situation, if a is executed.
- Actions have preconditions and are described by their effects.
- Relations whose truth value changes over time are called fluents. Represented through a predicate with two arguments: the fluent and a state term. For example, $At(x, s)$ means, that in situation s, the agent is at position x. $Holding(y, s)$ means that in situation s, the agent holds object y.
- Atemporal or eternal predicates, e.g., $Portable(gold)$.
Example: WUMPUS-World

Let s_0 be the initial situation and

$s_1 = \text{do}(\text{forward}, s_0)$

$s_2 = \text{do}(\text{turn(right)}, s_1)$

$s_3 = \text{do}(\text{forward}, s_2)$
Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

\[
\forall x, s [\text{Poss}(\text{grab}(x), s) \iff \text{Present}(x, s) \land \text{Portable}(x)]
\]

In the WUMPUS-World:

\[
\text{Portable}(\text{gold}), \forall s [\text{AtGold}(s) \Rightarrow \text{Present}(\text{gold}, s)]
\]

Positive effect axiom:

\[
\forall x, s [\text{Poss}(\text{grab}(x), s) \Rightarrow \text{Holding}(x, \text{do}(\text{grab}(x), s))]\]

Negative effect axiom:

\[
\forall x, s \neg \text{Holding}(x, \text{do}(\text{release}(x), s))
\]
The Frame Problem

We had: \(\text{Holding}(\text{gold}, s_0) \).

Following situation: \(\neg \text{Holding}(\text{gold}, \text{do(\text{release(gold)}, s_0)}) \)?

We had: \(\neg \text{Holding}(\text{gold}, s_0) \).

Following situation: \(\neg \text{Holding}(\text{gold}, \text{do(\text{turn(right)}, s_0)}) \)?

- We must also specify which fluents remain unchanged!

- The frame problem: Specification of the properties that do not change as a result of an action.

→ Frame axioms must also be specified.
\[\forall a, x, s [\text{Holding}(x, s) \land (a \neq \text{release}(x)) \Rightarrow \text{Holding}(x, \text{do}(a, s))] \]

\[\forall a, x, s [\neg\text{Holding}(x, s) \land \{(a \neq \text{grab}(x)) \lor \neg\text{Poss}(\text{grab}(x), s)\} \Rightarrow \neg\text{Holding}(x, \text{do}(a, s))] \]

Can be very expensive in some situations, since \(O(|F| \times |A|) \) axioms must be specified, \(F \) being the set of fluents and \(A \) being the set of actions.
A more elegant way to solve the frame problem is to fully describe the successor situation:

\[
\text{true after action} \iff [\text{action made it true or, already true and the action did not falsify it}]
\]

Example for \textit{grab}:

\[
\forall a, x, s [\text{Holding}(x, do(a, s)) \iff \{(a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x))\}]\]

Can also be automatically compiled by only giving the effect axioms (and then applying \textit{explanation closure}). Here we suppose that only certain effects can appear.
Limits of this Version of Situation Calculus

- No explicit **time**. We cannot discuss how long an action will require, if it is executed.
- **Only one agent**. In principle, however, several agents can be modeled.
- No parallel execution of actions.
- **Discrete situations**. No continuous actions, such as moving an object from A to B.
- **Closed world**. Only the agent changes the situation.
- **Determinism**. Actions are always executed with absolute certainty.

→ Nonetheless, sufficient for many situations.
We can describe the temporal occurrence of event/actions:

- **absolute** by using a date/time system
- **relative** with respect to other event occurrences
- **quantitatively**, using time measurements (5 secs)
- **qualitatively**, using comparisons (before/overlaps)
Allen’s Interval Calculus

- Allen proposed a calculus about **relative order** of **time intervals**
- Allows us to describe, e.g.,
 - Interval I occurs before interval J
 - Interval J occurs before interval K
- and to conclude
 - Interval I occurs before interval K
- → 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relation

$I < J$, $J > I$
before/after

$I s J$, $J s^{-1} I$
starts

$I m J$, $J m^{-1} I$
meets

$I o J$, $J o^{-1} I$
overlaps

$I d J$, $J d^{-1} I$
during

$I f J$, $J f^{-1} I$
finishes

$I = J$
Examples

- Using Allen’s relation system one can describe temporal configurations as follows:

 \[X < Y, \ Y \circ Z, \ Z > X \]

- One can also use disjunctions (unions) of temporal relations:

 \[X(<,m)Y, \ Y(o,s)Z, \ Z > X \]
How do we reason in Allen’s system

- Checking whether a set of formulae is satisfiable
- Checking whether a temporal formula follows logically

→ Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on *composing relations*
Constraint Propagation

Do that for every triple until nothing changes anymore, then CSP is 3-consistent

\[
\begin{align*}
X < Y \ s \ Z &= X \ Z \\
X < Y \ o \ Z &= X \ Z \\
X \ m \ Y \ s \ Z &= X \ Z \\
X \ m \ Y \ o \ Z &= X \ Z
\end{align*}
\]
In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).

Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:
- Description logics for representing conceptual knowledge.
- James Allen’s time interval calculus for representing qualitative temporal knowledge.
- Planning: Instead of situation calculus, there is a specialized calculus (STRIPS) that allows us to address the frame problem efficiently.

→ Generality vs. efficiency
→ In every case, logical semantics is important!