
Foundations of Artificial Intelligence
8. Satisfiability and Model Construction

Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT

Wolfram Burgard, Bernhard Nebel and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg



Contents

1 Motivation

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” complexity of the satisfiability problem

4 GSAT: Greedy SAT Procedure

(University of Freiburg) Foundations of AI 2 / 24



Motivation

propositional logic - typical algorithmic questions:

Logical deduction

Given: A logical theory (set of propositions)
Question: Does a proposition logically follow from this theory?
Reduction to unsatisfiability, which is coNP-complete (complementary to
NP problems)

Satisfiability of a formula (SAT)

Given: A logical theory
Wanted: Model of the theory
Example: Configurations that fulfill the constraints given in the theory
Can be “easier” because it is enough to find one model

(University of Freiburg) Foundations of AI 3 / 24



The Satisfiability Problem (SAT)

given:
propositional formula ϕ in CNF
wanted:

model of ϕ

or proof, that no such model exists

(University of Freiburg) Foundations of AI 4 / 24



SAT and CSP

SAT can be formulated as a Constraint-Satisfaction-Problem (→ search):

CSP-Variables = Symbols of the alphabet

domain of values = {T, F}
constraints given by clauses

(University of Freiburg) Foundations of AI 5 / 24



SAT and CSP

SAT can be formulated as a Constraint-Satisfaction-Problem (→ search):

CSP-Variables = Symbols of the alphabet

domain of values = {T, F}
constraints given by clauses

(University of Freiburg) Foundations of AI 5 / 24



The DPLL algorithm

The DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1962)
corresponds to backtracking with inference in CPSs:

recursive Call DPLL (∆, l) with ∆: set of clauses and l: variable
assignment

result is a satisfying assignment that extends l or ’unsatisfiable’ if no
such assignment exists.

first call by DPLL(∆, ∅)

Inference in DPLL:

simplify: if variable v is assigned a value d, then all clauses containing v
are simplified immediately (corresponds to forward checking)

variables in unit clauses (= clauses with only one variable) are
immediately assigned (corresponds to minimum remaining values
ordering in CSPs)

(University of Freiburg) Foundations of AI 6 / 24



The DPLL Procedure

DPLL Function

Given a set of clauses ∆ defined over a set of variables Σ, return
“satisfiable” if ∆ is satisfiable. Otherwise return “unsatisfiable”.

1. If ∆ = ∅ return “satisfiable”

2. If � ∈ ∆ return “unsatisfiable”

3. Unit-propagation Rule: If ∆ contains a unit-clause C, assign a
truth-value to the variable in C that satisfies C, simplify ∆ to ∆′ and
return DPLL(∆′).

4. Splitting Rule: Select from Σ a variable v which has not been assigned
a truth-value. Assign one truth value t to it, simplify ∆ to ∆′ and call
DPLL(∆′)

a. If the call returns “satisfiable”, then return “satisfiable”.
b. Otherwise assign the other truth-value to v in ∆, simplify to ∆′′ and

return DPLL(∆′′).

(University of Freiburg) Foundations of AI 7 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T

{{a, b}, {¬a,¬b}, {a,¬b}}
2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule: b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI 8 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T

{{a,¬b,¬c}, {b}, {c}}
2. Unit-propagation rule: b 7→ T

{{a,¬c}, {c}}
3. Unit-propagation rule: c 7→ T

{{a}}
4. Unit-propagation rule: a 7→ T

{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI 9 / 24



Properties of DPLL

DPLL is complete, correct, and guaranteed to terminate.

DPLL constructs a model, if one exists.

In general, DPLL requires exponential time (splitting rule!)
→ Heuristics are needed to determine which variable should be
instantiated next and which value should be used.

DPLL is polynomial on Horn clauses, i.e., clauses with at most one
positive literal ¬A1,∨ . . . ∨ ¬An ∨B (see next slides)

In all SAT competitions so far, DPLL-based procedures have shown the
best performance.

(University of Freiburg) Foundations of AI 10 / 24



DPLL on Horn Clauses (0)

Horn Clauses constitute an important special case, since they require only
polynomial runtime of DPLL.

Definition: A Horn clause is a clause with maximally one positive literal
E.g., ¬A1 ∨ . . . ∨ ¬An ∨B or ¬A1 ∨ . . . ∨ ¬An

(n = 0 is permitted).

Equivalent representation: ¬A1 ∨ . . . ∨ ¬An ∨B ⇔
∧

iAi ⇒ B
→ Basis of logic programming (e.g. PROLOG)

(University of Freiburg) Foundations of AI 11 / 24



DPLL on Horn Clauses (1)

Note:

1. The simplifications in DPLL on Horn clauses always generate Horn
clauses

2. If the first sequence of applications of the unit propagation rule in
DPLL does not lead to termination, a set of Horn clauses without unit
clauses is generated

3. A set of Horn clauses without unit clauses and without the empty
clause is satisfiable, since

All clauses have at least one negative literal (since all non-unit clauses have
at least two literals, where at most one can be positive (Def. Horn))
Assigning false to all variables satisfies formula

(University of Freiburg) Foundations of AI 12 / 24



DPLL on Horn Clauses (2)

4. It follows from 3.:

a. every time the splitting rule is applied, the current formula is satisfiable
b. every time, when the wrong decision (= assignment in the splitting rule) is

made, this will be immediately detected (e.g. only through unit
propagation steps and the derivation of the empty clause).

4. Therefore, the search trees for n variables can only contain a maximum
of n nodes, in which the splitting rule is applied (and the tree branches).

4. Therefore, the size of the search tree is only polynomial in n and
therefore the running time is also polynomial.

(University of Freiburg) Foundations of AI 13 / 24



How Good is DPLL in the Average Case?

We know that SAT is NP-complete, i.e., in the worst case, it takes
exponential time.

This is clearly also true for the DPLL-procedure.
→ Couldn’t we do better in the average case?

For CNF-formulae in which the probability for a positive appearance,
negative appearance and non-appearance in a clause is 1/3, DPLL needs
on average quadratic time (Goldberg 79)!
→ The probability that these formulae are satisfiable is, however, very
high.

(University of Freiburg) Foundations of AI 14 / 24



Phase Transitions . . .

Conversely, we can, of course, try to identify hard to solve problem
instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible
conjecture:

All NP-complete problems have at least one order parameter and the hard to
solve problems are around a critical value of this order parameter. This
critical value (a phase transition) separates one region from another, such as
over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton path . . . later also for other
NP-complete problems.

(University of Freiburg) Foundations of AI 15 / 24



Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92):
Clause length k is given. Choose variables for every clause k and use the
complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

(University of Freiburg) Foundations of AI 16 / 24



Empirical Difficulty

The Davis-Putnam (DPLL) Procedure shows extreme runtime peaks at
the phase transition:

Note: Hard instances can exist even in the regions of the more easily
satisfiable/unsatisfiable instances!

(University of Freiburg) Foundations of AI 17 / 24



Notes on the Phase Transition

When the probability of a solution is close to 1 (under-constrained),
there are many solutions, and the first search path of a backtracking
search is usually successful.

If the probability of a solution is close to 0 (over-constrained), this fact
can usually be determined early in the search.

In the phase transition stage, there are many near successes (“close, but
no cigar”)

→ (limited) possibility of predicting the difficulty of finding a solution
based on the parameters

→ (search intensive) benchmark problems are located in the phase
region (but they have a special structure)

(University of Freiburg) Foundations of AI 18 / 24



Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of
variables (example CSP), and we can sacrifice completeness if we can
“solve” much large instances this way.

Standard process for optimization problems: Local Search

Based on a (random) configuration

Through local modifications, we hope to produce better configurations

→ Main problem: local maxima

(University of Freiburg) Foundations of AI 19 / 24



Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could
use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global
maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments
of CNF formulae (even without injecting noise).

(University of Freiburg) Foundations of AI 20 / 24



GSAT

Procedure GSAT
INPUT: a set of clauses α, Max-Flips, and Max-Tries
OUTPUT: a satisfying truth assignment of α, if found

begin
for i := 1 to Max-Tries
T := a randomly-generated truth assignment
for j := 1 to Max-Flips

if T satisfies α then return T
v := a propositional variable such that a change in its

truth assignment gives the largest increase in
the number of clauses of α that are satisfied by T

T := T with the truth assignment of v reversed
end for

end for
return “no satisfying assignment found”

end

(University of Freiburg) Foundations of AI 21 / 24



The Search Behavior of GSAT

In contrast to normal local search methods, we must also allow sideways
movements!

Most time is spent searching on plateaus.

(University of Freiburg) Foundations of AI 22 / 24



State of the Art

SAT competitions since beginning of the 90s

Current SAT competitions (http://www.satcompetition.org/):
In 2010:

Largest “industrial” instances: > 1,000,000 literals

Complete solvers are as good as randomized ones on handcrafted and
industrial problem

(University of Freiburg) Foundations of AI 23 / 24

http://www.satcompetition.org/


Concluding Remarks

DPLL-based SAT solvers prevail:

Very efficient implementation techniques
Good branching heuristics
Clause learning

Incomplete randomized SAT-solvers

are good (in particular on random instances)
but there is no dramatic increase in size of what they can solve
parameters are difficult to adjust

(University of Freiburg) Foundations of AI 24 / 24


	Motivation
	Davis-Putnam-Logemann-Loveland (DPLL) Procedure
	The DPLL Procedure
	Example (1)
	Example (2)
	Properties of DPLL
	DPLL on Horn Clauses (0)
	DPLL on Horn Clauses (1)
	DPLL on Horn Clauses (2)

	``Average'' complexity of the satisfiability problem
	How Good is DPLL in the Average Case?
	Phase Transitions …
	Phase Transitions with 3-SAT
	Empirical Difficulty
	Notes on the Phase Transition
	Local Search Methods for Solving Logical Problems
	Dealing with Local Maxima

	GSAT: Greedy SAT Procedure
	GSAT
	The Search Behavior of GSAT
	State of the Art


