Course evaluation:

- Yay! It’s time for the course evaluation once again!
- You should have received emails with all the necessary details.
- Please complete the evaluation by July 27th, so we can discuss it on July 31st.
- Separate evaluations for BN and RM.
Motivation

- Preference relations \prec contain no information about “by how much” one candidate is preferred.
- **Idea**: Use money to measure this.
- Use money also for transfers between players “for compensation”.

Setting

Formalization:

- Set of alternatives A.
- Set of n players I.
- Valuation functions $v_i : A \to \mathbb{R}$ such that $v_i(a)$ denotes the value player i assigns to alternative a.
- Payment functions specifying amount $m_i \in \mathbb{R}$ that player i receives (or pays).
- Utility of player i: $u_i(a) = v_i(a) + m_i$.
Second price auctions:

- There are n players bidding for a single item.
- Player i’s private valuations of item: w_i.
- Desired outcome: Player with highest private valuation wins bid.
- Players should reveal their valuations truthfully.
- Winner i pays price p^* and has utility $w_i - p^*$.
- Non-winners pay nothing and have utility 0.
Second Price Auctions

Formally:

- $A = N$
- $v_i(a) = \begin{cases} w_i & \text{if } a = i \\ 0 & \text{else} \end{cases}$

- What about payments? Say player i wins:
 - $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$.
 - $p^* = w_i$ (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \epsilon$.
 - better: $p^* = \max_{j \neq i} w_j$ (winner pays second highest bid).
Definition (Vickrey Auction)
The winner of the Vickrey Auction (aka second price auction) is the player i with the highest declared value w_i. He has to pay the second highest declared bid $p^* = \max_{j \neq i} w_j$.

Proposition (Vickrey)
Let i be one of the players and w_i his valuation for the item, u_i his utility if he truthfully declares w_i as his valuation of the item, and u'_i his utility if he falsely declares w'_i as his valuation of the item. Then $u_i \geq u'_i$.

Proof
See
Idea: Generalization of Vickrey auctions.

Preferences modeled as functions $v_i : A \rightarrow \mathbb{R}$.

Let V_i be the space of all such functions for player i.

Unlike for social choice functions: Not only decide about chosen alternative, but also about payments.
Mechanisms

Definition (Mechanism)

A mechanism \(\langle f, p_1, \ldots, p_n \rangle \) consists of
- a social choice function \(f : V_1 \times \cdots \times V_n \rightarrow A \) and
- for each player \(i \), a payment function \(p_i : V_1 \times \cdots \times V_n \rightarrow \mathbb{R} \).

Definition (Incentive Compatibility)

A mechanism \(\langle f, p_1, \ldots, p_n \rangle \) is called incentive compatible if for each player \(i = 1, \ldots, n \), for all preferences \(v_1 \in V_1, \ldots, v_n \in V_n \) and for each preference \(v'_i \in V_i \),

\[
v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).
\]
VCG Mechanisms

- If \(\langle f, p_1, \ldots, p_n \rangle \) is incentive compatible, truthfully declaring one's preference is dominant strategy.

- The Vickrey-Clarke-Groves mechanism is an incentive compatible mechanism that maximizes “social welfare”, i.e., the sum over all individual utilities \(\sum_{i=1}^{n} v_i(a) \).

- **Idea:** Reflect other players’ utilities in payment functions, align all players’ incentives with goal of maximizing social welfare.
Definition (Vickrey-Clarke-Groves mechanism)

A mechanism \(\langle f, p_1, \ldots, p_n \rangle \) is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

1. \(f(v_1, \ldots, v_n) \in \arg\max_{a \in A} \sum_{i=1}^{n} v_i(a) \) for all \(v_1, \ldots, v_n \) and

2. there are functions \(h_1, \ldots, h_n \) with \(h_i : V_i \rightarrow \mathbb{R} \) such that
\[
p_i(v_1, \ldots, v_n) = h_i(v_i) - \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))
\]
for all \(i = 1, \ldots, n \) and \(v_1, \ldots, v_n \).

Note: \(h_i(v_i) \) independent of player \(i \)'s declared preference \(\Rightarrow \)
\(h_i(v_i) = c \) constant from player \(i \)'s perspective.

Utility of player \(i \) = \(v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{j=1}^{n} v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c \).
VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)
Every VCG mechanism is incentive compatible.

Proof
Let \(i, v_{-i}, v_i \) and \(v'_i \) be given. Show: Declaring true preference \(v_i \) dominates declaring false preference \(v'_i \).

Let \(a = f(v_i, v_{-i}) \) and \(a' = f(v'_i, v_{-i}) \).

Utility player \(i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases} \)

Alternative \(a = f(v_i, v_{-i}) \) maximizes social welfare
\(\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a'). \)

\(\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}). \)
So far: payment functions p_i and functions h_i unspecified.

One possibility: $h_i(v_{-i}) = 0$ for all h_i and v_{-i}.

Drawback: Too much money distributed among players (more than necessary).

Further requirements:
- Players should pay at most as much as they value the outcome.
- Players should only pay, never receive money.
Individual Rationality, Positive Transfers

Definition (individual rationality)
A mechanism is individually rational if all players always get a nonnegative utility, i.e., if for all $i = 1, \ldots, n$ and all v_1, \ldots, v_n,

$$v_i(f(v_1, \ldots, v_n)) - p_i(v_1, \ldots, v_n) \geq 0.$$

Definition (positive transfers)
A mechanism has no positive transfers if no player is ever paid money, i.e., for all preferences v_1, \ldots, v_n,

$$p_i(v_1, \ldots, v_n) \geq 0.$$
Clarke Pivot Function

Definition (Clarke pivot function)
The Clarke pivot function is the function

\[h_i(v_{-i}) = \max_{b \in A} \sum_{j \neq i} v_j(b). \]

- This leads to payment functions

\[p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \]

for \(a = f(v_1, \ldots, v_n) \).

- Player \(i \) pays the difference between what the other players could achieve without him and what they achieve with him.

- Each player internalizes the externalities he causes.
Clarke Pivot Function

Example

- Players $I = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: b best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose $v_2(b) - v_2(a) = 6$ units of utility.

\Rightarrow Clarke pivot function $h_1(v_2) = 15$

\Rightarrow payment function

$$p_1(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$
Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \geq 0$ for all $i = 1, \ldots, n$, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, \ldots, v_n)$ be the alternative maximizing $\sum_{j=1}^{n} v_j(a)$, and b the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player i: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for i: $p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since b maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, \ldots, v_n) \geq 0$ (no positive transfers).

...
Proof (ctd.)

Individual rationality: Since \(v_i(b) \geq 0 \),

\[
u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1}^{n} v_j(a) - \sum_{j=1}^{n} v_j(b).
\]

Since \(a \) maximizes \(\sum_{j=1}^{n} v_j(a) \),

\[
\sum_{j=1}^{n} v_j(a) \geq \sum_{j=1}^{n} v_j(b)
\]

and hence \(u_i \geq 0 \).

Therefore, the mechanism is also individually rational.
Vickrey Auction as a VCG Mechanism

- \(A = N \). Valuations: \(w_i. v_a(a) = w_a, v_i(a) = 0 \ (i \neq a) \).
- \(a \) maximizes social welfare \(\sum_{i=1}^{n} v_i(a) \) iff \(a \) maximizes \(w_a \).
- Let \(a = f(v_1, \ldots, v_n) = \arg\max_{j \in A} w_j \) be the highest bidder.
- Payments: \(p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a) \).
- But \(\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b \).
- Winner pays value of second highest bid:

\[
p_a(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)
= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.
\]

- Non-winners pay nothing: For \(i \neq a \),

\[
p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)
= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.
\]
Example: Bilateral Trade

- **Seller** s offers item he values with $0 \leq w_s \leq 1$.
- **Potential buyer** b values item with $0 \leq w_b \leq 1$.
- **Alternatives** $A = \{\text{trade}, \text{no-trade}\}$.
- **Valuations:**
 \begin{align*}
 v_s(\text{no-trade}) &= 0, & v_s(\text{trade}) &= -w_s, \\
 v_b(\text{no-trade}) &= 0, & v_b(\text{trade}) &= w_b.
 \end{align*}

- VCG mechanism maximizes $v_s(a) + v_b(a)$.
- We have
 \begin{align*}
 v_s(\text{trade}) + v_b(\text{trade}) &= w_b - w_s, \\
 v_s(\text{no-trade}) + v_b(\text{no-trade}) &= 0
 \end{align*}

 i.e., *trade* maximizes social welfare iff $w_b \geq w_s$.
Example: Bilateral Trade (ctd.)

- **Requirement:** if *no-trade* is chosen, neither player pays anything:

 \[p_s(v_s, v_b) = p_b(v_s, v_b) = 0. \]

- To that end, choose Clarke pivot function for buyer:

 \[h_b(v_s) = \max_{a \in A} v_s(a). \]

- **For seller:** Modify Clarke pivot function by an additive constant and set

 \[h_s(v_b) = \max_{a \in A} v_b(a) - w_b. \]
Example: Bilateral Trade (ctd.)

For alternative *no-trade*,

\[
p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\text{no-trade}) = w_b - w_b - 0 = 0 \quad \text{and} \quad p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\text{no-trade}) = 0 - 0 = 0.
\]

For alternative *trade*,

\[
p_s(v_s, v_b) = \max_{a \in A} v_b(a) - w_b - v_b(\text{trade}) = w_b - w_b - w_b = -w_b \quad \text{and} \quad p_b(v_s, v_b) = \max_{a \in A} v_s(a) - v_s(\text{trade}) = 0 + w_s = w_s.
\]
Example: Bilateral Trade (ctd.)

- Because $w_b \geq w_s$, the seller gets at least as much as the buyer pays, i.e., the mechanism subsidizes the trade.
- Without subsidies, no incentive compatible bilateral trade possible.
- **Note:** Buyer and seller can exploit the system by colluding.
Example: Public Project

- Project costs C units.
- Each citizen i privately values the project at w_i units.
- Government will undertake project if $\sum_i w_i > C$.
- Alternatives: $A = \{\text{project, no-project}\}$.
- Valuations:

 \[
 v_G(\text{project}) = -C, \quad v_G(\text{no-project}) = 0, \\
 v_i(\text{project}) = w_i, \quad v_i(\text{no-project}) = 0.
 \]

- VCG mechanism with Clarke pivot rule: for each citizen i,

 \[
 h_i(v_{-i}) = \max_{a \in A} \left(\sum_{j \neq i} v_j(a) + v_G(a) \right) \\
 \begin{cases}
 \sum_{j \neq i} w_j - C, & \text{if } \sum_{j \neq i} w_j > C \\
 0, & \text{otherwise}.
 \end{cases}
 \]
Example: Public Project (ctd.)

- Citizen *i* pivotal if $\sum_j w_j > C$ and $\sum_{j \neq i} w_j \leq C$.
- Payment function for citizen *i*:

$$p_i(v_{1..n}, v_G) = h_i(v_{-i}) - \left(\sum_{j \neq i} v_j (f(v_{1..n}, v_G)) + v_G (f(v_{1..n}, v_G)) \right)$$

- Case 1: Project undertaken, *i* pivotal:

$$p_i(v_{1..n}, v_G) = 0 - \left(\sum_{j \neq i} w_j - C \right) = C - \sum_{j \neq i} w_j$$

- Case 2: Project undertaken, *i* not pivotal:

$$p_i(v_{1..n}, v_G) = \left(\sum_{j \neq i} w_j - C \right) - \left(\sum_{j \neq i} w_j - C \right) = 0$$

- Case 3: Project not undertaken:

$$p_i(v_{1..n}, v_G) = 0$$
Example: Public Project (ctd.)

- I.e., citizen i pays nonzero amount

$$C - \sum_{j \neq i} w_j$$

only if he is pivotal.

- He pays difference between value of project to fellow citizens and cost C, in general less than w_i.

- Generally,

$$\sum_{i} p_i(\text{project}) \leq C$$

i.e., project has to be subsidized.
Example: Buying a Path in a Network

- Communication network modeled as $G = (V, E)$.
- Each link $e \in E$ owned by different player e.
- Each link $e \in E$ has cost c_e if used.
- **Objective**: procure communication path from s to t.
- **Alternatives**: $A = \{ p \,|\, p \text{ path from } s \text{ to } t \}$.
- **Valuations**: $v_e(p) = -c_e$, if $e \in p$, and $v_e(p) = 0$, if $e \notin p$.
- **Maximizing social welfare**:
 minimize $\sum_{e \in p} c_e$ over all paths p from s to t.
- **Example**:

![Graph Example]

$$c_a = 4 \quad c_d = 12$$

$$c_b = 3 \quad c_e = 5$$
Example: Buying a Path in a Network (ctd.)

- For $G = (V, E)$ and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$.
- VGC mechanism with Clarke pivot function:

$$h_e(v - e) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'}$$

i.e., the cost of the cheapest path from s to t in $G \setminus e$.
(Assume that G is 2-connected, s.t. such p' exists.)

- Payment functions: for chosen path $p = f(v_1, \ldots, v_n)$,

$$p_e(v_1, \ldots, v_n) = h_e(v - e) - \sum_{e \notin e' \in p} -c_{e'}.$$

- **Case 1:** $e \notin p$. Then $p_e(v_1, \ldots, v_n) = 0$.
- **Case 2:** $e \in p$. Then

$$p_e(v_1, \ldots, v_n) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'} - \sum_{e \notin e' \in p} -c_{e'}.$$
Example: Buying a Path in a Network (ctd.)

Example:

\[c_a = 4 \]
\[c_b = 3 \]
\[c_d = 12 \]
\[c_e = 5 \]

- Cost along \(b \) and \(e \): 8
- Cost without \(e \): 3
- Cost of cheapest path without \(e \): 15 (along \(b \) and \(d \))
- Difference is payment: \(-15 - (-3) = -12\)
 - I.e., owner of arc \(e \) gets payed 12 for using his arc.

Note: Alternative path after deletion of \(e \) does not necessarily differ from original path at only one position. Could be totally different.
Summary

- New preference model: with money.
- VCG mechanisms generalize Vickrey auctions.
- VCG mechanisms are incentive compatible mechanisms maximizing social welfare.
- With Clarke pivot rule: even no positive transfers and individually rational (if nonnegative valuations).
- Various application areas.