1 Motivation

- Global Constraints
- All-different
- Sum and Cardinality
- Circuit

Global constraints

What are global constraints?

- Type of similar constraint relations...
- ... differing in the number of variables
- Semantically redundant: same constraint can be expressed by a conjunction of simpler constraints
- Similar structure: can be exploited by constraint solvers

Examples:

- sum constraint, knapsack constraint, element constraint, all-different constraint, cardinality constraints
All-different constraint

Definition
Let v_1, \ldots, v_n be variables each with a domain $D_i \ (1 \leq i \leq n)$.

$$\text{alldifferent}(v_1, \ldots, v_n) := \{(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : d_i \neq d_j \text{ for } i \neq j\}$$

The all-different constraint is a simple, but widely used global constraint in constraint programming. It allows for compact modeling of CSP problems.

Example: n-Queens Problem

No-attack constraints:

- $v_i \neq v_j$ for $1 \leq i < j \leq n$
- $v_i - v_j \neq i - j$ for $1 \leq i < j \leq n$
- $v_j - v_i \neq i - j$ for $1 \leq i < j \leq n$

Problem representation:
- Variables v_i for each column $1, \ldots, n$;
- v_i can take a "row value" $1, \ldots, n$.

Sum constraint

Definition
Let v_1, \ldots, v_n, z be variables with subsets of Q as domain.
For each v_i, let $c_i \in Q$ be some fixed scalar, $c = (c_1, \ldots, c_n)$.

The sum constraint is defined as:

$$\text{sum}(v_1, \ldots, v_n, z; c) := \{(d_1, \ldots, d_n, d) \in (\prod_{1 \leq i \leq n} D_i) \times D_z : d = \sum_{1 \leq i \leq n} c_i d_i\}.$$

Global cardinality constraint

Let v_1, \ldots, v_n: "assignment variables" with $D_{v_i} \subseteq \{d_1^*, \ldots, d_m^*\}$.
c_1, \ldots, c_m: "count variables" with sets of integers as domains.

Definition
The global cardinality constraint is defined as:

$$\text{gcc}(v_1, \ldots, v_n, c_1, \ldots, c_m) :=\{(d_1, \ldots, d_n, a_1, \ldots, a_m) \in \prod_{1 \leq i \leq n} D_{v_i} \times \prod_{1 \leq j \leq m} D_{c_j} :$$

$$\text{for each } j, \ d_j^* \text{ occurs in } (d_1, \ldots, d_n) \text{ exactly } a_j \text{ times}\}$$

The global cardinality constraint can be considered a generalization of the all-different constraint.
Motivation Circuit

Circuit constraint
Let \(s = (s_1, \ldots, s_n) \) be a permutation of \(\{1, \ldots, n\} \).
Define \(C_s \) as the smallest set that contains 1 and with each element \(i \) also \(s_i \).
\((s_1, \ldots, s_n)\) is called cyclic if \(C_s = \{1, \ldots, n\} \).

Definition
Let \(v_1, \ldots, v_n \) be variables with domains \(D_i = \{1, \ldots, n\} \) \((1 \leq i \leq n)\).
\[
circuit(v_1, \ldots, v_n) := \{(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : (d_1, \ldots, d_n) \text{ is cyclic}\}
\]
Given an assignment \(a = (d_1, \ldots, d_n) \), define
\[
A := \{(v_i, v_{d_i}) : d_i \in D_i, 1 \leq i \leq n\}.
\]
Then, \(a \) satisfies \(\circuit(v_1, \ldots, v_n) \) if and only if \((V, A) \) is a directed cycle (without proper sub-cycles).

Constraint optimization problem

Definition
A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function \(f \) that assign to each variable assignment \(a \) a value \(f(a) \in \mathbb{Q} \).

- Minimization COP: Find a solution \(a \) that minimizes \(f(a) \).
- Maximization COP: Find a solution \(a \) that maximizes \(f(a) \).
- Optimal solution: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:
Given an instance of a COP, \((N, f)\), and some threshold \(t \in \mathbb{Q} \), is there a solution \(a \) of \(P \) such that \(f(a) \geq t \) \((f(a) \leq t, \text{ resp.})? \)

Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):
Given a set of \(n \) cities and distances \(c_{ij} \) between city \(i \) and city \(j \), find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem ...
Filtering

Arc consistency
All-different Constraint

Filtering by enforcing arc consistency

- In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network.
 - Recall: Enforcing generalized arc consistency runs in time $O(erd')$,
 where e is the number of constraints and r is the largest arity of some constraint in the network.
- Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.
- In the following we consider the all-different constraints.

Value graphs

Definition
An undirected graph $G = \langle V, E \rangle$ is bipartite if there exists a partition $S \cup T$ of V such that for each $\{x, y\} \in E$, $x \in S$ iff $y \in T$.
A directed graph $G = \langle V, A \rangle$ is bipartite if there exists a partition $S \cup T$ of V such that $A \subseteq (S \times T) \cup (T \times S)$.
G is then written in the form $G = \langle S, T, E \rangle$ (resp. $G = \langle S, T, A \rangle$).

Definition
Let V be a set of variables and D be the union of all domains D_v for $v \in V$.
The value graph of V is defined as the following bipartite graph:
$G = \langle V, D, E \rangle$
where $E = \{ \{v, d\} : v \in V, d \in D_v \}$.
Example: Value graph

Consider variables v_1, \ldots, v_4 with $D_1 = \{b, c, d, e\}$, $D_2 = \{b, c\}$, $D_3 = \{a, b, c, d\}$, $D_4 = \{b, c\}$.

Value graph:

```
+---+---+---+---+
|   |   |   |   |
| a | b | c | d |
+---+---+---+---+
|   |   |   |   |
|    | v_1 | v_2 | v_3 | v_4 |
```

Matchings

Let $G = (V, E)$ be an undirected (simple) graph.

Definition

A matching in G is a set $M \subseteq E$ of pairwisely disjoint edges. A matching M covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in M. $v \in V$ is M-free if M does not cover $\{v\}$.

Definition

Let M be a matching in G. A path $P = v_0, e_1, \ldots, e_k, v_k$ in G is M-alternating if all the edges e_i are alternately out of and in M. An M-alternating path $P = v_0, e_1, \ldots, e_k, v_k$ is called M-augmenting if v_0 and v_k are M-free.

Max-cardinality matching

Let $G = (V, E)$ be a graph and M be a matching in G.

Theorem (Peterson)

M is a max-cardinality matching (i.e., it is a matching of maximum cardinality) if and only if there is no M-augmenting path in G.

Remark: If M is a matching and v_0, \ldots, v_k is an M-augmenting path, then

$$M' := M \oplus \{v_i, v_{i+1} : 0 \leq i \leq k - 1\}$$

is a matching with $|M'| = |M| + 1$.

Hence a max-cardinality matching can be obtained by repeatedly searching for an M-augmenting path in G.

Max-cardinality matching on bipartite graphs

Let $G = (U, W, E)$ be a bipartite graph and M be some matching in G. Define a directed bipartite graph $G_M = (U, W, A)$ by

$$A := \{(w, u) : \{u, w\} \in M, u \in U, w \in W\} \cup \{(u, w) : \{u, w\} \in E \setminus M, u \in U, w \in W\}$$

Each directed path in G_M is M-alternating. If such a path starts and ends in an M-free vertex (starts in U, ends in W), it is an M-augmenting path in G.

If no M-augmenting path can be found, M is a max-cardinality matching.

This can be used to compute a max-cardinality matching in time $O(|U| \cdot |A|)$ (van der Waerden and König)...

...can be improved to $O(\sqrt{|U|} \cdot |A|)$ (Hopcroft and Karp)
Example: Computing a max-cardinality matching

\[\begin{align*}
 a & \quad b & \quad c & \quad d & \quad e \\
 v_1 & \quad v_2 & \quad v_3 & \quad v_4 \\
 \end{align*} \]

... and max-cardinality matching
\[M = \{\{v_4, b\}, \{v_2, c\}, \{v_1, e\}, \{v_3, a\}\} \]

All-different constraint and matching

Let \(V = \{v_1, \ldots, v_n\} \) be a set of variables and \(G \) be the value graph of \(V \).
Let \((d_1, \ldots, d_n)\) be a variable assignment.

Lemma
\((d_1, \ldots, d_n) \in \text{alldifferent}(v_1, \ldots, v_n)\) if and only if \(M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\} \) is a matching in \(G \).

Arc-consistent all-different constraint

Lemma
The constraint \(\text{alldifferent}(v_1, \ldots, v_n) \) is generalized arc-consistent if and only if every edge in \(G \) belongs to a matching in \(G \) that covers \(V \).

Proof.
Simple (exercise!).

Edges in max-cardinality matchings

Theorem
Let \(G \) be a graph and let \(M \) be a max-cardinality matching in \(G \).
An edge \(e \) belongs to some max-cardinality matching in \(G \) if and only if one of the following conditions holds:

- \(e \in M \).
- \(e \) is on an even-length \(M \)-alternating path starting at an \(M \)-free vertex;
- \(e \) is on an even-length \(M \)-alternating cycle.
Filtering All-different Constraint

1. Compute a max-cardinality matching M in the value graph of V (can be done in time $O(m\sqrt{n})$ where $m = \sum_{1 \leq i \leq n} |D_i|$)
2. Identify the even M-alternating paths starting in an M-free vertex and the M-alternating cycles:
 2.1 Define dir. bipartite graph $G_M = (V, D_V, A)$ with $A = \{(v, d) : v \in V, \{v, d\} \in M\} \cup \{(d, v) : v \in V, \{v, d\} \in E \setminus M\}$
 2.2 Compute the strongly connected components in G_M (in time $O(n + m)$)
 2.3 Mark acrs between vertices in the same component as "used": they belong to an even M-alternating cycle
 2.4 Mark arcs as "used" that belong to a M-alternating path in G_M that starts in an M-free vertex (breadth-first search in time $O(m)$).
3. Update $D_v \leftarrow D_v \setminus \{d\}$ for all edges $\{v, d\}$ where the corresponding arc is not marked as "used".

Example: Enforcing arc-consistency

Start from max-cardinality matching

Compute strongly connected components (e.g. by Kosaraju’s algorithm)

Mark "used" arcs
Example: Enforcing arc-consistency

\[\begin{align*}
 a & \rightarrow b \\
 a & \rightarrow c \\
 a & \rightarrow d \\
 a & \rightarrow e \\
 b & \rightarrow v_1 \\
 b & \rightarrow v_2 \\
 b & \rightarrow v_3 \\
 b & \rightarrow v_4 \\
 c & \rightarrow v_1 \\
 c & \rightarrow v_2 \\
 c & \rightarrow v_3 \\
 c & \rightarrow v_4 \\
 d & \rightarrow v_1 \\
 d & \rightarrow v_2 \\
 d & \rightarrow v_3 \\
 d & \rightarrow v_4 \\
 e & \rightarrow v_1 \\
 e & \rightarrow v_2 \\
 e & \rightarrow v_3 \\
 e & \rightarrow v_4 \\
\end{align*} \]

... and remove unused arcs

The all-different constraint is now arc-consistent

Reference: