Constraint Satisfaction Problems
Tractable Constraint Languages

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

June 27 & July 2/4, 2012
Expressiveness vs. complexity

- For some restricted constraint languages we know some polynomial time algorithms that solve each instance of that language.
- Restricting constraint languages entails restricting expressiveness, i.e., the class of problems that can be expressed in the language.

Expressiveness vs computational complexity?
CSP instances aka constraint networks

Definition

An instance of a constraint satisfaction problem (i.e., a constraint network) is a triple

\[P = \langle V, D, C \rangle, \]

where:

- \(V \) is a non-empty and finite set of variables,
- \(D \) is an arbitrary set (domain),
- \(C \) is a finite set of constraints \(C_1, \ldots, C_q \), i.e., each constraint \(C_i \) is a pair \((s_i, R_i) \), where \(s_i \) is a tuple of variables of length \(m_i \) and \(R_i \) is an \(m_i \)-ary relation on \(D \) (\(s_i \): constraint scope; \(R_i \): constraint relation).
The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, N, determine if there exists a solution to N, i.e., determine whether

$$\text{Sol}(N) := \{ (d_1, \ldots, d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } N \}$$

(where n is the number of variables of V) is not empty.

Restricting the general CSP:

- **structural restriction**: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties)
- **relational restriction**: consider just CSP instances, where the constraint relations have a specific form or specific properties
Restricting the general CSP

The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, N, determine if there exists solution to N, i.e., determine whether

$$\text{Sol}(N) := \{(d_1, \ldots, d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } N\}$$

(where n is the number of variables of V) is not empty.

Restricting the general CSP:

- **structural restriction**: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties)
- **relational restriction**: consider just CSP instances, where the constraint relations have a specific form or specific properties
Tractable Constraint Languages
A constraint language is an arbitrary set of relations, Γ, defined over some fixed domain (denoted by $D(\Gamma)$).

For a constraint language Γ, let $\text{CSP}(\Gamma)$ be the class of CSP instances $N = \langle V, D, C \rangle$ such that for each $(s, R) \in C$, $R \in \Gamma$. $\text{CSP}(\Gamma)$ is called the relational subclass associated with Γ.

A finite constraint language Γ is tractable if there exists a polynomial algorithm that solves all instances of $\text{CSP}(\Gamma)$. An infinite constraint language Γ is tractable if each finite subset of the language is tractable.

Following, we present some examples:
Example: CHIP language

CHIP is a constraint language for arithmetic and other constraints. Basic constraints in CHIP are so-called:

- **domain constraints**: unary constraints that restrict the domains of variables to a finite set of natural numbers
- **arithmetic constraints**: constraints of one of the forms

 \[ax = by + c \]
 \[ax \leq by + c \]
 \[ax \geq by + c \]

 \((a, b, c \in \mathbb{N}, a \neq 0)\). If these equations are conceived of as relations, the resulting constraint language is tractable.

The language is still tractable if we allow for relations expressed by

\[a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \geq by + c \]
\[ax_1 \cdots x_n \geq by + c \]
\[(a_1 x_1 \geq b_1) \lor \cdots \lor (a_n x_n \geq b_n) \lor (ay \geq b) \]
Example: Linear relations

Let D be any field (e.g., the field of real numbers).
A linear relation on D is any relation defined by some system of linear equations:

$$a_1 x_1 + \cdots + a_n x_n = r \quad (a_1, \ldots, a_n, r \in D).$$

Then any instance of $\text{CSP}(\Gamma_{\text{lin}})$ can be represented by a system of linear equations over D, and hence can be solved in polynomial time (apply Gaussian elimination).

Hence, the language of all linear relations over D is tractable.
Example: Relations on finite orderings

Let D be a finite ordered set.
Consider the binary \textit{disequality relation}

$$\neq_D = \{(d_1, d_2) \in D^2 : d_1 \neq d_2\}$$

The class of CSP instances $\text{CSP}(\{\neq_D\})$ corresponds to the graph colorability problem with $|D|$ colors. $\text{CSP}(\{\neq_D\})$ is tractable if $|D| \leq 2$ or $|D| = \infty$, and intractable, otherwise.

The ternary \textit{betweenness relation} over D is defined by:

$$B_D = \{(a, b, c) \in D^3 : a < b < c \lor c < b < a\}$$

$\text{CSP}\{B_D\}$ is tractable if $|D| \leq 4$, and intractable if $|D| \geq 5$.
Example: Connected row-convex relations

Let $D = \{d_1, \ldots, d_n\}$ be a finite (totally) ordered set. For a binary relation R over D, the matrix representation of R is an $n \times n$ 0,1-matrix M_R, where $M_R[d, d'] = 1$ iff $(d, d') \in R$.

The pruned matrix representation of R results from the matrix representation of R, when we remove all rows and columns in which only 0’s occur.

R is connected row-convex, if in the pruned matrix representation of R, the pattern of 1’s is connected along each column, along each row, and forms a connected 2-dimensional region.

For example,

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

The constraint language on any class of connected row-convex relations is tractable.
Example: Boolean constraints

Let $D = \{0, 1\}$.

The class of CSP instances $\text{CSP}(\{N_D\})$, where

$$N_D = D^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$$

is the not-all-equal relation over D, is intractable. $\text{CSP}(\{N_D\})$ corresponds to the not-all-equal satisfiability problem (NAE-3SAT), which is known to be NP-hard.

The class of CSP instances $\text{CSP}(\{T_D\})$, where

$$T_D = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\},$$

is intractable. $\text{CSP}(\{T_D\})$ corresponds to the one-in-three satisfiability problem (1-in-3 SAT).
Example: 0/1/all-relations

Let D be an arbitrary finite set. A relation R over D is called a 0/1/all-relation if one of the following conditions holds:

- R is unary;
- $R = D_1 \times D_2$ for subsets D_1, D_2 of D;
- $R = \{(d, \pi(d)) : d \in D_1\}$, for some subset $D_1 \subseteq D$ and some permutation π of D;
- $R = \{(a, b) \in D_1 \times D_2 : a = d_1 \lor b = d_2\}$, for some subsets D_1, D_2 of D and some elements $d_1 \in D_1, d_2 \in D_2$.

The language defined by all 0/1/all-relations is tractable.

It is even maximal tractable: if we add any binary relation over D that is not a 0/1/all-relation, then the resulting constraint language becomes intractable.
max-closed relations

Let \((D, <)\) be a linear order. Define \(\max : D \times D \to D\) in the usual way, i.e., \(\max(a, b) = a\) if \(a > b\), and \(\max(a, b) = b\), otherwise.

We extend \(\max\) to a function that can be applied to tuples, i.e., we define \(\max : D^k \times D^k \to D^k\) by

\[
\max((a_1, \ldots, a_k), (b_1, \ldots, b_k)) := (\max(a_1, b_1), \ldots, \max(a_k, b_k)).
\]

Definition

An \(n\)-ary relation \(R\) over \(D\) is **max-closed** if for all \((a_1, \ldots, a_n), (b_1, \ldots, b_n) \in R\),

\[
\max((a_1, \ldots, a_n), (b_1, \ldots, b_n)) \in R.
\]
Lemma

Let Γ be a constraint language with max-closed relations only. Then $\text{CSP}(\Gamma)$ is tractable.

Proof.

Enforce generalized arc consistency. If any domain of the resulting network is empty, the network is inconsistent. Otherwise, set each variable to its maximal value,
Example: max-closed relations

Consider the CHIP language. All relations of CHIP are max-closed. Hence any set of equations can be solved by establishing gen. arc consistency.

For example, consider a CSP instance with domain \{1, \ldots, 5\}, variables \{v, w, x, y, z\}, and equations

\[
\begin{align*}
& w \neq 3, \quad z \neq 5, \quad 3v \leq z, \quad y \geq z + 2, \\
& \quad 3x + y + z \geq 5w + 1, \quad wz \geq 2y.
\end{align*}
\]

Enforcing gen. arc consistency results in:

\[
D(v) = \{1\}, \quad D(w) = \{4\}, \quad D(x) = \{4, 5\}, \quad D(y) = \{5\}, \quad D(z) = \{3\}.
\]

Hence

\[
v \mapsto 1, \quad w \mapsto 4, \quad x \mapsto 5, \quad y \mapsto 5, \quad z \mapsto 3
\]

is a solution of the constraint network.
Schaefer’s Dichotomy Theorem
The key result in the literature on tractable constraint languages is Schaefer’s Dichotomy Theorem (1978).

Definition

A Boolean constraint language is a constraint language over the two-element domain $D = \{0, 1\}$.

Schaefer’s theorem states that any Boolean constraint language is either tractable or NP-complete. Moreover, it provides a classification of all tractable constraint languages.
Schaefer’s theorem

Theorem (Schaefer 1978)

Let Γ be a Boolean constraint language. Then Γ is tractable if at least one of the following conditions is satisfied:

1. Each relation in Γ contains the tuple $(0, \ldots, 0)$.
2. Each relation in Γ contains the tuple $(1, \ldots, 1)$.
3. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most one negative literal.
4. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most one positive literal.
5. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most two literals.
6. Each relation in Γ is the set of solutions of a system of linear equations over the finite field with 2 elements.

In all other cases, Γ is NP-complete.
Let Γ be a Boolean constraint language.

Class 1: any CSP instance N can be solved by simply assigning 0 to each variable of N.

Class 2: cf. Class 1 ($v \mapsto 1$).

Class 6: any CSP instance N can be solved by applying the Gaussian elimination procedure.

Class 5: any CSP instance N can be solved by resolution: in this case $\text{CSP}(\Gamma)$ corresponds to the 2-SAT satisfiability problem and this can be solved efficiently by resolution.

Class 4: any CSP instance N can be solved by unit resolution: here $\text{CSP}(\Gamma)$ corresponds to the Horn-SAT satisfiability problem, which can be solved efficiently by unit resolution.

Class 3: cf. Class 4 (“anti-Horn”).
Relational Clones
Gadgets

Definition

Let Γ be constraint language and R be a relation on $D(\Gamma)$. R is expressible in Γ if there exists a CSP instance $N \in \text{CSP}(\Gamma)$ and a sequence of variables x_1, \ldots, x_r in N such that

$$R = \pi_{x_1, \ldots, x_r}(\text{Sol}(N)).$$

N is referred to as a gadget for expressing R in $\text{CSP}(\Gamma)$, the sequence x_1, \ldots, x_r as construction site for R.

```
Which relation is expressed by the edge \((v_1, v_4)\)?
Expressiveness can also be reformulated in the following way: Let $\Gamma, \Gamma'$ be constraint languages (def. on the same domain $D$).

**Definition**

$\Gamma'$ is a **relational clone** of $\Gamma$ if $\Gamma'$ contains each relation definable by a FO-formula with

- relations from $\Gamma \cup \{=_{D}\}$,
- conjunctions, and
- existential quantification.

(Formulae of this form are called **primitive positive formulae**.)

**Definition**

Let $\Gamma$ be a constraint language. $\langle \Gamma \rangle$ denotes the smallest relational clone containing $\Gamma$, the **clone generated by** $\Gamma$. 
Consider a Boolean constraint language with the following relations:

\[ R_1 = \{(0, 1), (1, 0), (1, 1)\} \quad R_2 = \{(0, 0), (0, 1), (1, 0)\}. \]

The relational clone generated by the set of these two relations contains all 16 binary Boolean relations. For example:

\[ R_3 := \{(0, 1), (1, 0)\} \]
\[ R_4 := \{(0, 0), (1, 0), (1, 1)\} \]
\[ R_5 := \{(0, 0), (1, 1)\} \]
\[ R_6 := \{(0, 0)\} \]
\[ R_7 := \{(1, 1)\} \]
\[ R_8 := \{(0, 1)\} \]
\[ \ldots \]
Theorem

Let $\Gamma$ be a set of relations on a fixed domain $D$, and let $\Delta$ be a finite subset of $\langle \Gamma \rangle$. Then there exists a polynomial time reduction from $CSP(\Delta)$ to $CSP(\Gamma)$. 
Proof.

Let $\Delta = \{S_1, \ldots, S_k\}$ be a finite set of relations, where each $S_j$ is definable by a pp-formula with relations from $\Gamma$ and the relation $\equiv_D$. For each $S_j$ fix such a formula $\varphi_j(x_1, \ldots, x_{r_j})$, where $r_j$ is the arity of $S_j$. Without loss of generality, we may assume that each $\varphi_j(x_1, \ldots, x_{r_j})$ has the form

$$\exists u_1 \ldots u_m (R_1(w_1^1, \ldots, w_{k_1}^1) \land \cdots \land R_n(w_1^n, \ldots, w_{k_n}^n))$$  \hspace{1cm} (1)$$

where $w_1^1, \ldots, w_{k_1}^1, \ldots, w_1^n, \ldots, w_{k_n}^n \in \{x_1, \ldots, x_{r_j}, u_1, \ldots, u_m\}$ for some auxiliary variables $u_1, \ldots, u_m$, and $R_1, \ldots, R_n \in \Gamma \cup \{\equiv_D\}$. 

...
Let \( N = \langle V, D, C \rangle \) be an arbitrary instance in CSP(\( \Delta \)). Initially, set \( V' := V, D' := D, C' := C \). For each constraint \((s, R)\) (where \( s = (v_1, \ldots, v_r)\)) of \( N \), proceed as follows:

1. add the auxiliary variables \( u_1, \ldots, u_m \) to \( V' \) (always add new variables, rename variables if necessary (also in (1)))

2. remove \((r, R)\) from \( C'\) and instead add to \( C'\) the constraints (cf. (1)):

\[
((w_{k_1}^1, \ldots, w_{k_1}^n), R_1), \ldots, (w_{k_n}^1, \ldots, w_{k_n}^n, R_n)
\]

The CSP instance \( N' \) obtained by this procedure is contained in CSP(\( \Gamma \cup \{=_{D}\} \)) and is obviously equivalent to \( N \). Furthermore, from \( N' \) we can obtain a CSP instance \( N'' \) in CSP(\( \Gamma \)) by deleting constraints of the form \((v_i, v_j), =_{D}\) and replacing any occurrence of \( v_j \) by \( v_i \). Obviously, both transformation can be done in polynomial time.
Corollary

A constraint language $\Gamma$ is tractable if and only if its relational clone $\langle \Gamma \rangle$ is tractable. $\Gamma$ is NP-complete if and only if $\langle \Gamma \rangle$ is NP-complete.

Remark: $\Gamma$ is called NP-complete if $\text{CSP}(\Delta)$ is NP-complete for some finite subset $\Delta \subseteq \Gamma$.

Corollary

Let $\Gamma$ be a constraint language and let $R$ be a relation. $R$ is expressible in $\Gamma$ if and only if $R \in \langle \Gamma \rangle$. 
Expressiveness
The indicator problem

Let $k \geq 1$ be a fixed natural number.
Let $s = (x_1, \ldots, x_m)$ be a list of $k$-tuples in $D^k$.
Let $R$ be an $n$-ary relation on $D$.

We say, that $s$ matches $R$ if $n = m$ and if for each $1 \leq i \leq k$, the $n$-tuple $(x_1[i], \ldots, x_n[i])$ is in $R$.

Let now $\Gamma$ be a fixed finite constraint language over a finite domain. Set $I_k(\Gamma) = \langle V, D, C \rangle$, where

$$V := D^k$$
$$C := \{(s, R) : R \in \Gamma, s \text{ matches } R\}$$

Note: $I_k(\Gamma) \in \text{CSP}(\Gamma)$ and contains constraints from $\Gamma$ on every possible scope which matches some relation in $\Gamma$.

**Definition**

$I_k(\Gamma)$ is said to be the **indicator problem of order** $k$ for $\Gamma$. 
Example: $\neg$, $\oplus$

Consider the Boolean constraint language containing the unary relation $\neg$ and the exclusive-or relation $\oplus$, i.e.,

$$R_{\oplus} = \{(0,1), (1,0)\} \quad \text{and} \quad R_{\neg} = \{(0)\}.$$ 

The 3-rd order indicator problem of this language is:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ \oplus \] \[ \neg \]
Example: $\neg$, $\oplus$

Consider the Boolean constraint language containing the unary relation $\neg$ and the exclusive-or relation $\oplus$, i.e.,

$$R_\oplus = \{(0, 1), (1, 0)\} \quad \text{and} \quad R_\neg = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

```
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
```
Example: $\neg$, $\oplus$

Consider the Boolean constraint language containing the unary relation $\neg$ and the exclusive-or relation $\oplus$, i.e.,

$$R_{\oplus} = \{(0, 1), (1, 0)\} \quad \text{and} \quad R_{\neg} = \{(0)\}.$$  

The 3-rd order indicator problem of this language is:

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
\bullet & \bullet
\end{array}
\]
Example: $\neg, \oplus$

Consider the Boolean constraint language containing the unary relation $\neg$ and the exclusive-or relation $\oplus$, i.e.,

$$R_\oplus = \{(0, 1), (1, 0)\} \quad \text{and} \quad R_\neg = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

$$\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}$$
Example (cont’d): $\neg$, $\oplus$

Solutions of this indicator problem:

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Solutions

1 0 1 1 0 0 1 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0
Expressiveness and the indicator problem

Theorem (Jeavons (1998))

Let $\Gamma$ be a finite constraint language over some finite domain $D$ and let $R = \{t_1, \ldots, t_k\}$ be any $n$-ary relation on $D$. Equivalent are:

(a) $R$ is expressible in $\Gamma$ (i.e., $R \in \langle \Gamma \rangle$).
(b) $I_k(\Gamma)$ is a gadget for expressing $R$ with construction site $(x_1, \ldots, x_n)$, where for each $1 \leq i \leq n$,

\[
x_i := (t_1[i], \ldots, t_k[i]).
\]

Proof.

The direction from (b) to (a) is trivial, since $I_k(\Gamma)$ is contained in CSP($\Gamma$). The other direction will be proved later.
Example: $\neg, \oplus$

**Problem:** Is the implication expressible in the Boolean language $\{\neg, \oplus\}$?

Consider the 3rd indicator problem (since $R\Rightarrow$ has three elements $(1, 1), (0, 0), (0, 1)$). Consider the variables $v = (1, 0, 0)$ and $w = (1, 0, 1)$:

$$
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline \\
\text{Solutions} \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
$$
Example: $\neg, \oplus$

**Problem:** Is the implication expressible in the Boolean language \{$\neg, \oplus$\}?

Consider the 3rd indicator problem (since $R \Rightarrow$ has three elements $(1, 1), (0, 0), (0, 1)$). Consider the variables $v = (1, 0, 0)$ and $w = (1, 0, 1)$:

$$
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
& & & & & & & & \\
\end{array}
$$

**Solutions**

$$
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
$$
**Example: \(\neg, \oplus\)**

**Problem:** Is the implication expressible in the Boolean language \(\{\neg, \oplus\}\)?

Consider the 3rd indicator problem (since \(R \Rightarrow\) has three elements \((1, 1), (0, 0), (0, 1)\)). Consider the variables \(v = (1, 0, 0)\) and \(w = (1, 0, 1)\):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

---

*Constraint Satisfaction Problems*

*Nebel, Hué and Wölfli*

*Tractable Constraint Languages*

*Schaefer's Dichotomy Theorem*

*Relational Clones*

*Expressiveness Polymorphisms*

*Tractability over Finite Domains*

*Literature*
Example: $\neg, \oplus$

**Problem:** Is the implication expressible in the Boolean language \{\neg, \oplus\}?

Consider the 3rd indicator problem (since $R\Rightarrow$ has three elements (1, 1), (0, 0), (0, 1)). Consider the variables $v = (1, 0, 0)$ and $w = (1, 0, 1)$:

\[
\begin{array}{c|c|c|c|c|c}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

Solutions

\[
\begin{array}{l|l|l|l|l|l}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

From this we obtain that

\[\pi_{(v,w)}(\text{Sol}(I_3(\Gamma))) = D \times D \neq R\Rightarrow.\]

Thus, the implication is not expressible.
Polymorphisms
Let $f$ be a $k$-ary operation, i.e., a function $f : D^k \rightarrow D$.
For any collection of $n$-tuples, $t_1, \ldots, t_k \in D^n$, let $f(t_1, \ldots, t_k)$ be defined as the $n$-tuple:

$$(f(t_1[1], \ldots, t_k[1]), \ldots, f(t_1[n], \ldots, t_k[n])).$$

**Definition**

Let $f : D^k \rightarrow D$ be a $k$-ary operation, and $R$ be an $n$-ary relation.

$f$ is a **polymorphism** of $R$ (or: $R$ is invariant under $f$) if for all $t_1, \ldots, t_k \in R$, $f(t_1, \ldots, t_k) \in R$. 

"Polymorphisms"
Polymorphisms and invariant relations

Let $\Gamma$ be a set of relations on a fixed domain $D$, and let $F$ be a set of operations on $D$. Then define:

$\text{Pol}(\Gamma)$: the set of operations on $D$ that preserve each relation in $\Gamma$

$\text{Inv}(F)$: the set of relations on $D$ that are invariant under each operation of $F$

Lemma

$\text{Pol}$ and $\text{Inv}$ define anti-monotone functions, and are related by the following Galois connection:

$$\Gamma \subseteq \text{Inv}(F) \iff F \subseteq \text{Pol}(\Gamma).$$

In particular, it holds:

$$\Gamma \subseteq \text{Inv}(\text{Pol}(\Gamma)) \quad \text{and} \quad F \subseteq \text{Pol}(\text{Inv}(F)).$$
Lemma

Let $\Gamma$ be a constraint language. The solutions of the $k$-th indicator problem $I_k(\Gamma)$ are precisely the $k$-ary polymorphisms of $\Gamma$.

Proof.

Apply the definitions . . .
Expressiveness and polymorphisms

Lemma

Let $\Gamma$ be a constraint language over some domain $D$. If $f : D^k \to D$ is a polymorphism of each $R \in \Gamma$, then $f$ is a polymorphism of each $R \in \langle \Gamma \rangle$.

Proof.

Induction on primitive positive formula (exercise).
The following lemma completes the proof of Jeavons’ theorem:

**Lemma**

Let $R = \{t_1, \ldots, t_k\}$ be an $n$-ary relation (over some finite domain $D$). For $1 \leq i \leq n$, set $x_i := (t_1[i], \ldots, t_k[i])$.

If $R$ is expressible in $\Gamma$, then $R = \pi_{x_1, \ldots, x_n}(\text{Sol}(I_k(\Gamma)))$.

**Proof.**

Blackboard.
Expressiveness and Invariants

**Theorem**

For any constraint language \( \Gamma \) over some finite domain \( D \),

\[
\langle \Gamma \rangle = \text{Inv}(\text{Pol}(\Gamma))
\]

**Proof.**

\( \subseteq \) is clear. For the converse let \( R \) be an \( n \)-ary relation that is invariant for each polymorphism of \( \Gamma \). We have to show that \( R \in \langle \Gamma \rangle \). Let \( R = \{t_1, \ldots, t_k\} \) and consider the \( k \)-th indicator problem of \( \Gamma \). First define \( x_i := (t_1[i], \ldots, t_k[i]) \) \( (1 \leq i \leq n) \), then consider \( R_t = \pi_{x_1, \ldots, x_n}(\text{Sol}(I_k(\Gamma))) \). By one of the lemmas above, \( R \) is expressible if \( R = R_t \).

\( R_t \subseteq R \) follows from the facts that every solution of \( I_k(\Gamma) \) is a \( k \)-ary polymorphism and that each polymorphism of \( \Gamma \) preserves \( R \). For \( R \subseteq R_t \), consider \( t_j \) in \( R \). Now the \( j \)-th projection function \( p_j : D^k \rightarrow D \) is a polymorphism. Hence \( t_j = p_j(t_1, \ldots, t_k) \in R \).
Corollary

A relation $R$ on a finite domain is expressible by a constraint language if and only if $\text{Pol}(\Gamma) \subseteq \text{Pol}(\{R\})$.

Corollary

Let $\Gamma$ and $\Delta$ be constraint languages on a finite domain. If $\Delta$ is finite and $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$, then $\text{CSP}(\Delta)$ is polynomial-time reducible to $\text{CSP}(\Gamma)$.
Tractability over Finite Domains
Following, we study $k$-ary operations $f : D^k \rightarrow D$.

**Definition**

- $f$ is **idempotent** if for each $x \in D$, $f(x, \ldots, x) = x$.
- Given $k = 3$, $f$ is a **majority operation** if for all $x, y \in D$,
  \[ f(x, x, y) = f(x, y, x) = f(y, x, x) = x. \]
- Given $k = 3$, $f$ is a **Mal’tsev operation** if for all $x, y \in D$,
  \[ f(y, y, x) = f(x, y, y) = x. \]
- $f$ is **conservative** if for all $x_1, \ldots, x_k \in D$,
  \[ f(x_1, \ldots, x_k) \in \{x_1, \ldots, x_k\}. \]
Operations (cont’d)

Definition

- Given $k = 2$, $f$ is a **semi-lattice operation** if it is
  - associative (i.e., $f(x, f(y, z)) = f(f(x, y), z)$),
  - commutative (i.e., $f(x, y) = f(y, x)$), and
  - idempotent.

- Given $k = 3$ and an Abelian group structure on $D$, $f$ is **affine** if for all $x, y, z \in D$,
  $$f(x, y, z) = x - y + z.$$

- Given $k \geq 3$, $f$ is a **near-unanimity operation** if for all $x, y \in D$,
  $$f(y, x, \ldots, x) = f(x, y, x \ldots, x) = \cdots = f(x, \ldots, x, y) = x.$$
Operations (cont’d)

Definition

- \( f \) is **essentially unary** if there exists an \( 1 \leq i \leq k \) and a unary non-constant operation \( g \) on \( D \) such that for all \( x_1, \ldots, x_k \in D \),

\[
f(x_1, \ldots, x_k) = g(x_i).
\]

If \( g \) is the identity operation, then \( f \) is called a **projection**.

- Given \( k \geq 3 \), \( f \) is a **semi-projection** if \( f \) is not a projection and there exists an \( 1 \leq i \leq k \), such that for all \( x_1, \ldots, x_k \in D \) with \( |\{x_1, \ldots, x_k\}| < k \),

\[
f(x_1, \ldots, x_k) = x_i.
\]
A necessary condition for tractability

**Theorem**

Given $P \neq NP$, any tractable constraint language $\Gamma$ over a finite domain has a solution to an indicator problem $I_k(\Gamma)$ that defines

- a constant operation,
- a majority operation,
- an idempotent binary operation,
- an affine operation, or
- a semi-projection.
The complexity of any language over a domain of size 2 can be determined by considering the solutions of its 3rd order indicator problem. The problem is intractable unless this indicator problem has one of the following six solutions:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Solutions</th>
<th>Schaefer class</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>1</td>
<td>Constant 0</td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0 0</td>
<td>1 1 1 1 1 1 1 1 1</td>
<td>2</td>
<td>Constant 1</td>
</tr>
<tr>
<td>1 0 1 0 1 0 1 0 0</td>
<td>1 1 1 1 1 1 1 1 0</td>
<td>3</td>
<td>Anti-Horn</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0 0</td>
<td>1 0 0 0 0 0 0 0 0</td>
<td>4</td>
<td>Horn-SAT</td>
</tr>
<tr>
<td>1 1 1 0 1 0 0 0 0</td>
<td>1 1 1 1 0 1 0 0 0</td>
<td>5</td>
<td>2-SAT</td>
</tr>
<tr>
<td>1 0 0 1 0 1 1 0 0</td>
<td>1 0 0 1 0 1 1 0 0</td>
<td>6</td>
<td>Linear</td>
</tr>
</tbody>
</table>
Example: $\neg, \oplus$

\[
\begin{array}{cccccccc}
\textbullet & \textbullet \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

\textbf{Solutions}

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\textcolor{red}{1} & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]
In what follows let $\Gamma$ always be a constraint language over a finite domain $D$. We present some sufficient criteria for (in-)tractability.

**Theorem**

If $\text{Pol}(\Gamma)$ contains a semi-lattice operation, then

- $\Gamma$ is tractable, and
- each instance of $\text{CSP}(\Gamma)$ can be solved by enforcing generalized arc consistency.
Examples

Example 1:
If $\Gamma$ is the Boolean constraint language containing all relations expressible by conjunctions of Horn clauses, then

$\land : \{0, 1\}^2 \rightarrow \{0, 1\}$

is a semi-lattice operation that is a polymorphism of $\Gamma$.

Example 2:
If $D$ is ordered, then $\max$ is a semi-lattice operation, which is a polymorphism of each set of max-closed relations.
Theorem

If $\text{Pol}(\Gamma)$ contains a conservative and commutative operation, then $\Gamma$ is tractable.

Note: If $\Gamma$ contains all unary relations on $D$, then all operations in $\text{Pol}(\Gamma)$ are conservative.
Sufficient conditions: Near-unanimity operations

**Theorem**

If $\text{Pol}(\Gamma)$ contains a $k$-ary near-unanimity operation, then

- $\Gamma$ is tractable.
- Each instance of $\text{CSP}(\Gamma)$ can be solved by enforcing strong $k$-consistency.

**Proof.**

Blackboard.
Examples

Example 3:
Let $\Gamma$ be the Boolean constraint language that consists of all relations definable by a PL-formula in CNF s.t. each conjunct has at most two literals.
Then
\[
d(x, y, z) := (x \land y) \lor (y \land z) \lor (x \land z)
\]
is a near-unanimity operation on $\{0, 1\}$ and a polym. of $\Gamma$.

Example 4:
The 0/1/all relations are invariant under the ternary operation
\[
d(x, y, z) := \begin{cases} 
  x & \text{if } y \neq z \\
  y & \text{else}
\end{cases}
\]
which is a near-unanimity operation.
Sufficient conditions: Mal’tsev operations

Theorem

*If* $\text{Pol}(\Gamma)$ *contains a* $k$-*ary Mal’tsev operation, then* $\text{CSP}(\Gamma)$ *is tractable.*

Note: Affine relations are Mal’tsev operations.
Lemma

Let $\Gamma$ be a constraint language over $D$, and let $f$ be a unary operation in $Pol(\Gamma)$. Let $f(\Gamma)$ be the set of all $f(R) := \{f(t) : t \in R\}$ with $R \in \Gamma$. Then, $CSP(\Gamma)$ is polynomial-time equivalent to $CSP(f(\Gamma))$.

Definition

A constraint language $\Gamma$ is reduced if all its unary polymorphisms are surjective.

Note: Each constraint language can be transformed into a reduced language. For this find all unary polymorphisms by generating and solving the 1st order indicator problem. Choose one of these polymorphisms $f$ with a minimal number of values in its range.
A sufficient condition for intractability

**Theorem**

Let \( \Gamma \) be a constraint language over a finite domain. If \( \text{Pol}(\Gamma) \) contains only essentially unary operations, then \( \text{CSP}(\Gamma) \) is \( \ NP \)-complete.

**Proof idea:**

We can assume that \( \Gamma \) is reduced. One can show that

- \( \not=_{D} \) is in \( \text{Inv}(\text{Pol}(\Gamma)) \);
- if \( |D| = 2 \), \( \text{Inv}(\text{Pol}(\Gamma)) \) contains the not-all-equal relation:

\[
D^3 \setminus \{(x, x, x) : x \in D\}
\]

which ensures that \( \text{CSP}(\Gamma) \) intractable.
Towards a classification

It can be shown that for any reduced constraint language $\Gamma$ on a finite domain $D$, one of the following conditions holds:

- $\text{Pol}(\Gamma)$ contains a constant operation;
- $\text{Pol}(\Gamma)$ contains a ternary near-unanimity operation;
- $\text{Pol}(\Gamma)$ contains a Mal’tsev operation;
- $\text{Pol}(\Gamma)$ contains an idempotent binary operation;
- $\text{Pol}(\Gamma)$ contains a semi-projection;
- $\text{Pol}(\Gamma)$ contains essentially unary operations only.

