Constraint Satisfaction Problems
Constraint Networks

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

May 7, 2012
1 Constraint Networks

2 Projection Networks

3 Constraint Networks and Graphs

4 Solving Constraint Networks
1 Constraint Networks

- Constraint networks
- Solution
- Normalized Constraint Networks
- Deduction
- Minimal Network
Constraint networks

Definition
A constraint network is a triple

\[N = \langle V, \text{dom}, C \rangle \]

where:
- \(V \) is a non-empty and finite set of variables;
- \(\text{dom} \) is a function that assigns to each variable \(v \in V \) a non-empty set \(\text{dom}(v) \) (\(\text{dom}(v) \) is called the domain of \(v \), elements of \(\text{dom}(v) \) are called values);
- \(C \) is a set of relations over variables of \(V \) (called constraints), i.e., each constraint is a relation \(R_{x_1, \ldots, x_m} \) over some scheme \(S = (x_1, \ldots, x_m) \) of variables in \(V \).

The set of constraint schemes \(\{S_1, \ldots, S_t\} \) is called network scheme.
Constraint networks

If we assume an ordering of the variables in V, we can write networks more compactly:

Definition

A *constraint network* is a triple

$$N = \langle V, D, C \rangle$$

where:

- $V = (v_1, \ldots, v_n)$ is a non-empty and finite sequence of variables;
- $D = (D_1, \ldots, D_n)$ is a sequence of domains for V (D_i is the domain of variable v_i);
- C is a set of constraints $R_{\overline{x}}$ where $\overline{x} = (v_{i_1}, \ldots, v_{i_m})$ is a scheme of variables in V and $R \subseteq D_{i_1} \times \cdots \times D_{i_m}$.
Example: 4-queens problem

The 4-queens problem can be represented as single constraint network. For example, consider variables v_1, \ldots, v_4 (each associated to a column of the 4×4-chess board). Each variable v_i has as its domain $D_i = \{1, \ldots, 4\}$ (conceived of as the row positions of a queen in column i).

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Define then binary constraints (thus encoding “non-attacking queen positions”):

$$R_{v_1, v_2} := \{(1, 3), (1, 4), (2, 4), (3, 1), (4, 1), (4, 2)\}$$

$$R_{v_1, v_3} := \{(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3)\}$$

...
Example: Graph colorability

k-Colorability of a graph G can be represented as a constraint network of the following form:

$V = \{v_i : v_i \text{ is a vertex in } G\}$

$D_i = \{1, \ldots, k\} \ (v_i \in V)$

$C = \{((v_i, v_j), \neq) : \{v_i, v_j\} \text{ is an edge of } G\}$

Constraint networks with binary constraints only can be represented by a directed labeled graph (even: an undirected graph if all constraints are symmetric).
Solution of a constraint network

Definition
A solution of a constraint network \(N = \langle V, D, C \rangle \) is a (variable) assignment

\[
a: V \rightarrow \bigcup_{i: v_i \in V} D_i
\]

such that

(a) \(a(v_i) \in D_i \), for each \(v_i \in V \),

(b) \((a(x_1), \ldots, a(x_m)) \in R \) for each constraints \(R_{x_1, \ldots, x_m} \) in \(C \).

\(N \) is called solvable (or: satisfiable) if \(N \) has a solution.

\(\text{Sol}(N) \) denotes the set of all solutions of \(N \).
Instantiation, partial solution

Let $N = \langle V, D, C \rangle$ be a constraint network.

Definition

(a) An instantiation of a subset V' of V is an assignment $a : V' \rightarrow \bigcup_{i: v_i \in V'} D_i$ with $a(v_i) \in D_i$.

(b) An instantiation a of V' is called partial solution if a satisfies each constraint R_S in C with $S \subseteq V'$.

We also say: a is consistent relative to N.

(c) For an instantiation a of a subset $V' = \{x_1, \ldots, x_m\}$ and a constraint R_S with scope $S \subseteq V'$, let

$$\bar{a}[S] := (a(x_1), \ldots, a(x_m)).$$

Hence a solution is an instantiation of all variables in V that is consistent relative to N.
Instantiation, solution

Note:

(a) An instantiation of variables in $V' \subseteq V$, a, is a partial solution (consistent relative to N) iff

$$\bar{a}[S] \in R, \quad \text{for each constraint } R \text{ with scope } S \subseteq V'.$$

(b) Not every partial solution is part of a (full) solution, i.e., there may be partial solutions of a constraint network that cannot be extended to a solution. For the 4-queens problem, for example,

\[
\begin{array}{cccc}
V_1 & V_2 & V_3 & V_4 \\
1 & q & & \\
2 & & & q \\
3 & & & \\
4 & & q & \\
\end{array}
\]
Normalized constraint network

Let $N = \langle V, D, C \rangle$ be a constraint network. Due to our definition it is possible that C contains constraints

$$R_{v_{i_1}, \ldots, v_{i_k}} \text{ and } S_{v_{j_1}, \ldots, v_{j_k}}$$

where (j_1, \ldots, j_k) is just a permutation of (i_1, \ldots, i_k). Without changing the set of solutions, we can simplify the network by deleting $S_{v_{j_1}, \ldots, v_{j_k}}$ from C and rewriting $R_{v_{i_1}, \ldots, v_{i_k}}$ as follows:

$$R_{v_{i_1}, \ldots, v_{i_k}} \leftarrow R_{v_{i_1}, \ldots, v_{i_k}} \cap \pi_{v_{i_1}, \ldots, v_{i_k}}(S_{v_{j_1}, \ldots, v_{j_k}}).$$

Given a fixed order on the set of variables V, we can systematically delete-and-refine constraints. This results in a constraint network that contains at most one constraint for each subset of variables. Such a network is called a normalized constraint network.
Equivalence

Let N and N' be constraint networks on the same set of variables and on the same domains for each variable.

Definition

N and N' are called equivalent if they have the same set of solutions.

Example:
Tightness

Let N and N' be (normalized) constraint networks on the same set of variables and on the same domains for each variable.

Definition

N is as tight as N' if for each constraint R_S of N,

(a) N' has no constraint with the same scope as R_S, or

(b) $R \subseteq \pi_S(R'_S)$, where R'_S is the constraint of N' with the same scope as R_S.

\[\begin{array}{c}
\geq \\
1,2,3 \\
1,2,3 \\
\geq
\end{array} \]

\[\begin{array}{c}
< \\
1,2,3 \\
1,2,3 \\
<
\end{array} \]

\[\begin{array}{c}
\neq \\
1,2,3 \\
1,2,3 \\
\neq
\end{array} \]

Clearly, if N' is as tight as N, then $\text{Sol}(N') \subseteq \text{Sol}(N)$.

Warning: Different concepts of tightness can be found in the literature.

Here: Tightness does not account for comparing constraints with different arities.
Intersection of networks

Definition
The intersection of N and N', $N \cap N'$, is the network defined by intersecting for each scope the constraints $R_S \in C$ and $R'_S \in C'$ with the same scope, i.e., modulo a suitable permutation of the constraint schemes,

$$R''_S := R_S \cap R'_S.$$

If for a scope S only one of the networks contains a constraint, then we set:

$$R''_S := R_S \quad \text{(or} \quad := R'_S, \text{resp.)}$$

Lemma
If N and N' are equivalent networks, then $N \cap N'$ is equivalent to both networks and as tight as both networks.
Minimal network

Definition
Let N_0 be a constraint network and let N_1, \ldots, N_k be the set of all constraint networks (defined on the same set of variables and the same domains) that are equivalent to N_0.

$$\bigcap_{1 \leq i \leq k} N_i$$

is called the minimal network of N_0.

Lemma
The minimal network is equivalent to and as tight as all the constraint networks N_i. There is no network equivalent to N_0 that is tighter than the minimal network.
2 Projection Networks
Projecting constraints

Let R_S be a constraint with scheme $S = (x_1, \ldots, x_m)$ (we can think of R_S as a constraint network . . .).

Definition

The projection network of R_S, $\text{Proj}(R_S)$, is the constraint network defined by:

$$V := S, \quad D_i := \pi_{x_i}(R_S), \quad R'_{x_i,x_j} := \pi_{x_i,x_j}(R_S)$$

for all variables x_i and variable pairs x_i, x_j.

Consider $R_{x,y,z}$ with $R = \{(a, a, b), (a, b, b), (a, b, a)\}$.

Then $\text{Proj}(R_{x,y,z})$ consists of the following constraints: $R'_{x,y} = \{(a, a), (a, b)\}$, $R'_{x,z} = \{(a, b), (a, a)\}$, and $R'_{y,z} = \{(a, b), (b, b), (b, a)\}$.

In this case: $\text{Sol}(\text{Proj}(R_{x,y,z})) = R_{x,y,z}$.
Projecting constraints

The projection network is an upper approximation by binary networks in the following sense:

Lemma
Any solution of R_S (as a network) defines a solution of $\text{Proj}(R_S)$, i.e.,

$$R_S \subseteq \text{Sol}(\text{Proj}(R_S)).$$

Lemma
$\text{Proj}(R_S)$ is the “tightest” upper approximation of R_S by binary constraint networks, i.e., there is no binary constraint network N' defined on the variables of R_S such that:

$$R \subseteq \text{Sol}(N') \subsetneq \text{Sol}(\text{Proj}(R_S)).$$
Binary representation

Definition
A relation \(R_S \) with scope \(S \) has a **binary representation** if the relation (conceived of as a network) is equivalent to \(\text{Proj}(R_S) \).

From the fact that a relation has a binary representation, it does not follow that all its projections have binary representations as well (Exercise!).

Definition
A relation \(R_S \) with scope \(S \) is **binary decomposable** if the relation itself and all its projections to subsets of \(S \) (with at least 3 elements) have a binary representation.
3 Constraint Networks and Graphs

- Primal Constraint Graphs
- Dual Constraint Graph
- Constraint Hypergraph
Primal constraint graphs

Let $N = \langle V, D, C \rangle$ be a (normalized) constraint network.

Definition
The primal constraint graph of a network $N = \langle V, D, C \rangle$ is the undirected graph

$$G_N := \langle V, E_N \rangle$$

where

$$\{u, v\} \in E_N \iff \{u, v\} \text{ is a subset of the scope of some constraint in } N.$$
Primal constraint graph: Example

Consider a constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1,v_2,v_3} and S_{v_3,v_4,v_5}. Then the primal constraint graph of the network has the form:

Absence of an edge between two variables/nodes means that there is no explicit constraint in which both variables participate.
Dual constraint graphs

Definition
The dual constraint graph of a constraint network \(N = \langle V, D, C \rangle \) is the labeled graph

\[
D_N := \langle V', E_N, l \rangle
\]

with

\[
X \in V' \iff X \text{ is the scope of some constraint in } N
\]

\[
\{X, Y\} \in E_N \iff X \cap Y \neq \emptyset
\]

\[
l : E_N \to 2^V, \quad \{X, Y\} \mapsto X \cap Y
\]

In the example above, the dual constraint graph is:

\[
\begin{align*}
V_1, V_2, V_3 & \quad \text{(Scope of a constraint)} \\
V_3 & \quad \text{(Scope of a constraint)} \\
V_3, V_4, V_5 & \quad \text{(Scope of a constraint)}
\end{align*}
\]
Constraint hypergraph

Definition
The constraint hypergraph of a constraint network $N = \langle V, D, C \rangle$ is the hypergraph

$$H_N := \langle V, E_N \rangle$$

with

$$X \in E_N \iff X \text{ is the scope of some constraint in } N.$$

In the example above (constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1, v_2, v_3} and S_{v_3, v_4, v_5}) the hyperedges of the constraint hypergraph are:

$$E_N = \left\{ \{v_1, v_2, v_3\}, \{v_3, v_4, v_5\} \right\}.$$
4 Solving Constraint Networks
Simple solution strategy: Backtracking search

Backtracking: search systematically for consistent partial instantiations in a depth-first manner:

- **forward phase**: extend the current partial solution by assigning a consistent value to some new variable (if possible)
- **backward phase**: if no consistent instantiation for the current variable exists, we return to the previous variable.
Backtracking algorithm

Backtracking(N, a):

Input: a constraint network $N = \langle V, D, C \rangle$ and a partial assignment a of N

(e.g., the empty instantiation $a = \{ \})$

Output: a solution of N or “inconsistent”

if a is not consistent with N:
 return “inconsistent”

if a is defined for all variables in V:
 return a

select some variable v_i for which a is not defined

for each value x from D_i:
 $a' := a \cup \{ v_i \mapsto x \}$
 $a'' \leftarrow$ Backtracking(N, a')

if a'' is not “inconsistent”:
 return a''

return “inconsistent”
Rina Dechter.
Constraint Processing,
Chapter 2, Morgan Kaufmann, 2003