1. Languages: Relational Algebra
 - Projection
 - Selection
 - Union and Difference
 - Join
 - Summary
Languages

Paradigms

- Relational algebra
- Relational calculus
- SQL: not explicitly considered in this theory course!
Relational Algebra

Basic Operators

- delete attributes: **Projection**.
- select tuples: **Selection**.
- combine relations: **Join**.
- set operators: **Union**, **Difference**.
Projection

<table>
<thead>
<tr>
<th>MatrId</th>
<th>Name</th>
<th>Address</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223</td>
<td>Hans Eifrig</td>
<td>Seeweg 20</td>
<td>2</td>
</tr>
<tr>
<td>3434</td>
<td>Lisa Lustig</td>
<td>Bergstraße 11</td>
<td>4</td>
</tr>
<tr>
<td>1234</td>
<td>Maria Gut</td>
<td>Am Bächle 1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\downarrow\]

<table>
<thead>
<tr>
<th>MatrId</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223</td>
<td>Hans Eifrig</td>
</tr>
<tr>
<td>3434</td>
<td>Lisa Lustig</td>
</tr>
<tr>
<td>1234</td>
<td>Maria Gut</td>
</tr>
</tbody>
</table>
Projection on tuples

- Let $R(X)$ be a schema, where $X = \{A_1, \ldots, A_k\}$.
- Let Y be a set of attributes, where $\emptyset \subset Y \subseteq X$.
- Let $\mu \in \text{Tup}(X)$ be a tuple over X.
- $\mu[Y]$ is called projection of μ to Y:

 $\mu[Y] \in \text{Tup}(Y),$

 $\mu[Y](A) = \mu(A), A \in Y.$
Projection on relations

- Let \(r \subseteq \text{Tup}(X) \) a relation and \(Y \subseteq X \).
- \(\pi[Y]r \) is called projection of \(r \) to \(Y \):

\[
\pi[Y]r = \{ \mu \in \text{Tup}(Y) \mid \exists \mu' \in r, \text{such that } \mu = \mu'[Y] \}.
\]

Example

\[
\begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
a & a & c \\
c & b & d \\
\end{array}
\]

\(r = \)
\(\pi[A, C](r) = \)
Selection

<table>
<thead>
<tr>
<th>CourseId</th>
<th>Institute</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K010</td>
<td>DBIS</td>
<td>Databases</td>
<td>Foundations of Databases</td>
</tr>
<tr>
<td>K011</td>
<td>DBIS</td>
<td>Information Systems</td>
<td>Foundations of Information Systems</td>
</tr>
<tr>
<td>K100</td>
<td>MST</td>
<td>Microsystems</td>
<td>Foundations of Microsystems</td>
</tr>
</tbody>
</table>

Course'

<table>
<thead>
<tr>
<th>CourseId</th>
<th>Institute</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K100</td>
<td>MST</td>
<td>Microsystems</td>
<td>Foundations of Microsystems</td>
</tr>
</tbody>
</table>
Selection condition

- Let $A, B \in X$, $a \in \text{dom}(A)$, and $\theta \in \{=, \neq, \leq, <, \geq, >\}$ a comparison operator.
- An (atomic) selection condition α (on X) is of the form $A \theta B$, resp. $A \theta a$, resp. $a \theta A$.
- A tuple $\mu \in \text{Tup}(X)$ fulfills a selection condition α, if $\mu(A) \theta \mu(B)$, resp. $\mu(A) \theta a$, resp. $a \theta \mu(A)$ hold.
- Atomic selection conditions can be generalized to formulas using \land, \lor, \neg, and $($. $)$.

Example

$X = \{A, B, C\}.$
$\mu_1 = (A \to 2, B \to 2, C \to 1)$, $\mu_2 = (A \to 2, B \to 3, C \to 2)$
$\alpha_1 = (A = B)$, $\alpha_2 = ((B > 1) \land (C > 1))$
Selection

- Let $r \subseteq \text{Tup}(X)$ be a relation and α a selection condition over X.
- $\sigma[\alpha]r$ is called selection of relation r by α:

$$\sigma[\alpha]r = \{\mu \in \text{Tup}(X) \mid \mu \in r \land \mu \text{ fulfills } \alpha\}.$$

Example

Let $r = \begin{array}{ccc}
A & B & C \\
a & b & c \\
d & a & f \\
c & b & d
\end{array}$

Then $\sigma[B = b](r) =$
Union and difference

- Let X be a set of attributes and $r \subseteq \text{Tup}(X)$, $s \subseteq \text{Tup}(X)$ two relations.

$$r \cup s = \{ \mu \in \text{Tup}(X) \mid \mu \in r \lor \mu \in s \}.$$
$$r - s = \{ \mu \in \text{Tup}(X) \mid \mu \in r, \text{where } \mu \not\in s \}.$$

Example

$$r = \begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
d & a & f \\
c & b & d
\end{array}$$

$$s = \begin{array}{ccc}
A & B & C \\
\hline
b & g & a \\
d & a & f \\
\end{array}$$

$$r \cup s = \begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
d & a & f \\
c & b & d
\end{array}$$

$$r - s = \begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
d & a & f \\
\end{array}$$
Join

Student

<table>
<thead>
<tr>
<th>MatrId</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223</td>
<td>Hans Eifrig</td>
</tr>
<tr>
<td>3434</td>
<td>Lisa Lustig</td>
</tr>
<tr>
<td>1234</td>
<td>Maria Gut</td>
</tr>
</tbody>
</table>

Registration

<table>
<thead>
<tr>
<th>MatrId</th>
<th>CourseId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223</td>
<td>K010</td>
</tr>
<tr>
<td>1234</td>
<td>K010</td>
</tr>
</tbody>
</table>

Course

<table>
<thead>
<tr>
<th>CourseId</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>K010</td>
<td>Databases</td>
</tr>
<tr>
<td>K011</td>
<td>Information System</td>
</tr>
<tr>
<td>K100</td>
<td>Microsystems</td>
</tr>
</tbody>
</table>

The result of the join operation is as follows:

Student’

<table>
<thead>
<tr>
<th>MatrId</th>
<th>Name</th>
<th>CourseId</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223</td>
<td>Hans Eifrig</td>
<td>K010</td>
<td>Databases</td>
</tr>
<tr>
<td>1234</td>
<td>Maria Gut</td>
<td>K010</td>
<td>Databases</td>
</tr>
</tbody>
</table>
Join

- For sets of attributes X, Y, we may also write XY instead of $X \cup Y$.
- Let $r \subseteq \text{Tup}(X)$, $s \subseteq \text{Tup}(Y)$.
- The (natural) join \Join of r and s is defined:

$$r \Join s = \{ \mu \in \text{Tup}(XY) \mid \mu[X] \in r \land \mu[Y] \in s \}.$$

Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

\[
 r = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 6 \end{pmatrix}
\]

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\[
 s = \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 6 & 2 \\ 4 & 5 \end{pmatrix}
\]

\[
 r \Join s = \begin{pmatrix} A & B & C & D \end{pmatrix}
\]

Jan-Georg Smaus (Georg Lausen)
Observation about join

If $X_1 \cap X_2 = \emptyset$, then $r_1 \bowtie r_2 = r_1 \times r_2$.
Generalization of join

Let X_i, $1 \leq i \leq n$ be sets of attributes.

$$\Join_{i=1}^n r_i = \{ \mu \in \text{Tup}(\bigcup_{i=1}^n X_i) \mid \mu[X_i] \in r_i, 1 \leq i \leq n \}.$$
Basic Operators

- Selection, projection, union, difference, and join are the basic operators of relational algebra.
- The valid expressions of the relational algebra can be defined inductively.
- We could define other useful operators.
The relational algebra as query language

- In the algebra expressions we have seen, the operations are applied to relation instances (small letters r, s, \ldots), not relation names (capital letters R, S, \ldots).

- One can also build expressions based on the relation names. These expressions are then called queries and must be evaluated wrt. a database instance I. We write $I(Q)$ for the result of this evaluation, the answer. That is, to obtain $I(Q)$, one has to replace every relation name R occurring in Q by the relation instance $I(R)$.

- $I(Q)$ is again a relation. Recall that a query is formally given as a mapping (transformation) from a database instance to a relation instance.

- Not all computable transformations can be expressed in the relational algebra. Example: transitive closure.
Equivalence

Two algebra expressions Q, Q' are called equivalent, $Q \equiv Q'$, if for any instance \mathcal{I} of a database:

$$\mathcal{I}(Q) = \mathcal{I}(Q').$$

Examples

Let attr(α) be the attributes in α and let $R, S, T \ldots$ be relation names whose formats are X, Y, Z.

- $Z \subseteq Y \subseteq X \implies \pi[Z](\pi[Y]R) \equiv \pi[Z]R.$
- $X = Y \implies R \cap S \equiv R \bowtie S.$