Abstract Data Types

We have learned about different datastructures, e.g. for dictionaries:
- Search trees
- Lists
- Tables with hashing

Implementations of these concepts may have different characteristics:
- Memory usage
- Efficiency

Implementations should be exchangeable

Abstract over the concepts, use ADTs!
- Functional specification
- Implementation independent
- Different implementations of a single ADT are possible

ADTs are Special Signatures

Definition
Let Σ be a signature.

- A Σ-identity is a pair $(s, t) \in T(\Sigma, X) \times T(\Sigma, X)$. We write a Σ-identity as $s \approx t$ for emphasis.
- An ADT is a pair (Σ, E) where
 - Σ is a signature,
 - $E \subseteq T(\Sigma, X) \times T(\Sigma, X)$ is a set of Σ-identities.

Examples

An ADT for natural numbers

$\Sigma_{nat} = \{\text{zero}^{(0)}, \text{succ}^{(1)}\}$
$E_{nat} = \emptyset$

An ADT for integers

$\Sigma_{int} = \{\text{zero}^{(0)}, \text{pred}^{(1)}, \text{succ}^{(1)}\}$
$E_{int} = \{\text{pred}(\text{succ}(x)) \approx x, \text{succ}(\text{pred}(x)) \approx x\}$
Datatypes are Σ-Algebras

Definition

- An identity $s \approx t$ is valid in a Σ-algebra $A = (A, J)$ iff $J_\alpha(s) = J_\alpha(t)$ for all variable assignments $\alpha : X \to A$.
- A datatype is a Σ-algebra D.
- A datatype D implements the ADT (Σ, E) iff every identity $s \approx t \in E$ is valid in D.

(Note: We shall refine this definition later.)

Implementations of the ADT for Naturals

Implementation 1

$Dnat' = (\mathbb{N}, J')$,
- $J'(zero) = 0$,
- $J'(succ(x)) = x + 1$,
- $J'(pred(x)) = x - 1$

For arbitrary $\alpha : \{x\} \to \mathbb{N}$ we have
- $J'_\alpha(pred(succ(x))) = (\alpha(x) + 1) - 1 = J'_\alpha(x)$
- $J'_\alpha(succ(pred(x))) = (\alpha(x) - 1) + 1 = J'_\alpha(x)$

J' is surjective but not injective. Consider $J'(zero) = 0 = J'(succ(pred(zero)))$.

No identities, so all are valid.

The function J' is bijective.

Implementation 2

$Dnat'' = (\{0, 1, 2, 3\}, J'')$,
- $J''(zero) = 0$,
- $J''(succ(x)) = (x + 1) \mod 4$,
- $J''(pred(x)) = x \mod 4$

For arbitrary $\alpha : \{x\} \to \mathbb{N}$ we have
- $J''_\alpha(pred(succ(x))) = J''_\alpha(x)$
- $J''_\alpha(succ(pred(x))) = J''_\alpha(x)$

J'' is surjective but not injective.

Implementations of the ADT for Integers (1)

Implementation 1

$Dint' = (\mathbb{Z}, J')$,
- $J'(zero)() = 0$,
- $J'(succ(x)) = x + 1$,
- $J'(pred(x)) = x - 1$

For arbitrary $\alpha : \{x\} \to \mathbb{Z}$ we have
- $J'_\alpha(pred(succ(x))) = (\alpha(x) + 1) - 1 = J'_\alpha(x)$
- $J'_\alpha(succ(pred(x))) = (\alpha(x) - 1) + 1 = J'_\alpha(x)$

J' is surjective but not injective. Consider $J'(zero) = 0 = J'(succ(pred(zero)))$.

Implementations of the ADT for Integers (2)

Implementation 2

$Dint'' = (\{0, 1, 2, 3\}, J'')$,
- $J''(zero)() = 0$,
- $J''(succ(x)) = (x + 1) \mod 4$,
- $J''(pred(x)) = x \mod 4$

For arbitrary $\alpha : \{x\} \to \mathbb{N}$ we have
- $J''_\alpha(pred(succ(x))) = J''_\alpha(x)$
- $J''_\alpha(succ(pred(x))) = J''_\alpha(x)$

J'' is surjective but not injective.
Implementations of the ADT for Integers (3)

A Non-implementation

- $\text{Dint}'' = (\mathbb{N}, J'')$
 - $J''(\text{zero}()) = 0$
 - $J''(\text{succ})(x) = x + 1$
 - $J''(\text{pred})(x) = \begin{cases} x - 1 & x > 0 \\ 0 & x = 0 \end{cases}$

- Not an implementation:
 For $\alpha : X \to \mathbb{N}$ with $\alpha(x) = 0$ we have
 $$J_\alpha(\text{succ}(\text{pred}(x))) = 1 \neq 0 = J_\alpha(x)$$

Fixing the Problems

- Want to rule out implementations such as Dnat' and Dint'
- Definition of “implementation” is too weak
- Needed: restriction on function J
 - J is not necessarily injective (see Dint')
 - Idea: J must be injective on the equivalence classes induced by the identities of an ADT.
 In other words: J should make those terms equal that are equal according to the identities of the ADT, but not more!

Equivalence Classes

Definition

Suppose R is an equivalence relation on some set M.
- The set $[x]_R := \{ y \in M \mid x R y \}$ is called the equivalence class of x.
- $y \in [x]_R$ is called a representative of $[x]_R$.
- The quotient of M with respect to R is the set of equivalence classes induced by R, written $M/R := \{ [x]_R \mid x \in M \}$.

Note: For equivalence classes $[x]_R$ and $[y]_R$ we have either $[x]_R = [y]_R$ or $[x]_R \cap [y]_R = \emptyset$.

Congruence Relations

Definition

Suppose Σ is a signature and let R be an equivalence relation on $T(\Sigma, X)$.
- R is a congruence relation iff R is closed under Σ-operations, i.e. $t_i R t'_i$ implies $f(t_1, \ldots, t_i, \ldots, t_n) R f(t_1, \ldots, t'_i, \ldots, t_n)$ for any $n \geq 0$, $f \in \Sigma^{(n)}$, and $t_1, \ldots, t_n, t'_i \in T(\Sigma, X)$.
Syntactic Quotient Algebras

Definition
Let \(\Sigma \) be a signature and \(R \) be a congruence on \(T(\Sigma, X) \). For all \(n \geq 0 \), \(f \in \Sigma^{(n)} \), and \(t_1, \ldots, t_n \in T(\Sigma, X) \), define \(J^R \) as follows:

\[
J^R(f)([t_1]_R, \ldots, [t_n]_R) = [f(t_1, \ldots, t_n)]_R
\]

Note
- \((T(\Sigma, X)/R, J^R) \) is a \(\Sigma \)-algebra. Its carrier elements are sets of terms.
- The representatives are arbitrary: Let \(n \geq 0 \), \(f \in \Sigma^{(n)} \), and \(s_1, t_1, \ldots, s_n, t_n \in T(\Sigma, X) \). If \(s_i \sim t_i \), then \(f(s_1, \ldots, s_n) \sim f(t_1, \ldots, t_n) \). Hence, \([f(s_1, \ldots, s_n)]_R = [f(t_1, \ldots, t_n)]_R \), as \(R \) is a congruence.

Example

Congruence classes of \(\approx_{\text{int}} \)

\[
\Sigma_{\text{int}} = \{ \text{zero}^{(0)}, \text{pred}^{(1)}, \text{succ}^{(1)} \}
\]

\[
\mathcal{E}_{\text{int}} = \{ \text{pred}(\text{succ}(x)) \approx x, \text{succ}(\text{pred}(x)) \approx x \}
\]

\[
[z\text{ero}]_{\approx_{\text{int}}} = \{ \text{zero}, \text{succ}(\text{pred}(\text{zero})), \text{pred}(\text{succ}(\text{zero})), \text{succ}(\text{succ}(\text{pred}(\text{pred}(\text{zero})))), \ldots \}
\]

Equational Theory

Definition
Let \((\Sigma, \mathcal{E}) \) be an ADT. We define a relation \(\approx_{\mathcal{E}} \) on \(T(\Sigma, X) \) as the smallest relation such that:
- \(\approx_{\mathcal{E}} \) is a congruence relation;
- \(\approx_{\mathcal{E}} \) contains \(\mathcal{E} \), i.e. \(s \approx t \in \mathcal{E} \) implies \(s \approx_{\mathcal{E}} t \);
- \(\approx_{\mathcal{E}} \) is closed under substitutions, i.e. \(s \approx_{\mathcal{E}} t \) implies \(\sigma(s) \approx_{\mathcal{E}} \sigma(t) \) for any substitution \(\sigma \) and all \(s, t \in T(\Sigma, X) \).

Revised Definition for ADT Implementations

Definition
A datatype \(D = (M, J) \) implements ADT \((\Sigma, \mathcal{E}) \) with constructors \(\Gamma \subseteq \Sigma \) if:
- \((M, J) \) is a \(\Sigma \)-algebra (as before);
- All identities from \(\mathcal{E} \) are valid in \(M \) (as before);
- For all \(s, t \in T(\Gamma, \emptyset) \): \(s \approx_{\mathcal{E}} t \) iff \(J(s) = J(t) \) (new!)
Theorem
Let \((\Sigma, \mathcal{E})\) be an ADT with constructors \(\Gamma \subseteq \Sigma\). Then \(D = (T(\Sigma, \emptyset)/\approx, J^\approx)\) is an implementation of \((\Sigma, \mathcal{E})\).

Proof. Omitted

Example
\(\text{Nat as a constructor-based ADT (CADT)}\)
\[\text{CADT: } \Sigma = \{\text{zero, succ}\}, \mathcal{E} = \emptyset, \Gamma = \Sigma\]
Implementation: \((\mathbb{N}, J_1)\) with \(J_1(\text{zero})() = 0\) and \(J_1(\text{succ})(x) = x + 1\)
- \((\mathbb{N}, J_1)\) is \(\Sigma\)-algebra
- No identities to check
- Since \(\mathcal{E} = \emptyset, \approx\) is =.

\(\text{Dint}''\) is not an implementation of the natural numbers
\[\text{CADT: } \Sigma = \{\text{zero, succ}\}, \mathcal{E} = \emptyset, \Gamma = \Sigma\]
\[\{0, 1, 2, 3\}, J''\] with \(J''(\text{zero})() = 0, J''(\text{succ})(x) = (x + 1) \mod 4\) is not an implementation.
- \((\{0, 1, 2, 3\}, J'')\) is \(\Sigma\)-algebra
- No identities to check
- Since \(\mathcal{E} = \emptyset, \approx\) is =.

We have \(0 \neq \text{succ}^4(\text{zero})\) but \(J''(\text{zero}) = 0 = J''(\text{succ}^4(\text{zero}))\).

Example
\(\text{Alternative implementation of the natural numbers}\)
\[\text{CADT: } \Sigma = \{\text{zero, succ}\}, \mathcal{E} = \emptyset, \Gamma = \Sigma\]
Implementation: \((\{a\}^*, J'''\)) with \(J'''(\text{zero})() = \epsilon, J'''(\text{succ})(w) = aw\)
- \((\{a\}^*, J'''\)) is \(\Sigma\)-algebra
- No identities to check
- Since \(\mathcal{E} = \emptyset, \approx\) is =.

\(\text{If } s = t \text{ then } J'''(s) = J'''(t)\)
- Suppose \(s \neq t\). Then \(s = \text{succ}^n(t)\) with \(n > 0\). Hence, \(J'''(s) = J'''(t) + n \neq J'''(t)\).
Suppose \(\Gamma = \Sigma = \{ \text{zero}, \text{succ}, \text{pred} \} \),
\[E = \{ \text{succ}(\text{pred}(x)) = x, \text{pred}(\text{succ}(x)) = x \} \]

Question: What is \(T(\Sigma, \emptyset)/\approx_E \)?

Answer: Give a representative for every equivalence class.

Lemma

For every term \(t \in T(\Sigma, \emptyset) \), exactly one of the following propositions holds

A There exists \(n > 0 \) such that \(t \in [\text{succ}^n(\text{zero})]_{\approx_E} \).

B \(t \in [\text{zero}]_{\approx_E} \).

C There exists \(n > 0 \) such that \(t \in [\text{pred}^n(\text{zero})]_{\approx_E} \).

Proof (cont.)

- **Induction Step for \(t = \text{succ}(t') \).** By the IH, one of the following holds for \(t' \):
 - A \(t' \approx_E \text{succ}^n(\text{zero}) \) for \(n > 0 \): then
 \[\text{succ}(t') \approx_E \text{succ}^n(\text{zero}) = \text{succ}^{n+1}(\text{zero}). \]
 Since \(n + 1 > 0 \) we have case A.
 - B \(t' \approx_E \text{zero} \): then \(\text{succ}(t') \approx_E \text{succ}(\text{zero}) \). We have case A with \(n = 1 \).
 - C \(t' \approx_E \text{pred}^n(\text{zero}) \) for \(n > 0 \): then
 \[\text{succ}(t') \approx_E \text{succ}(\text{pred}^n(\text{zero})). \]
 If \(n = 1 \) then \(\text{succ}(\text{pred}(\text{zero})) \approx_E \text{zero} \) so case B holds.
 If \(n > 1 \) then \(\text{succ}(\text{pred}(\text{pred}^{n-1}(\text{zero}))) \approx_E \text{pred}^{n-1}(\text{zero}) \), so case C holds.

Proof (cont.)

- **Induction step for \(\text{pred}(t) \) analogus.**
Equivalence Classes for Terms Representing Integers

Lemma
Suppose \(n > 0, m > 0 \). Then we have

- \(\text{zero} \not\approx_E \text{succ}^n(\text{zero}) \),
- \(\text{zero} \not\approx_E \text{pred}^n(\text{zero}) \),
- \(\text{succ}^n(\text{zero}) \not\approx_E \text{pred}^m(\text{zero}) \),
- \(\text{succ}^n(\text{zero}) \not\approx_E \text{succ}^m(\text{zero}) \) provided \(n \neq m \), and
- \(\text{pred}^n(\text{zero}) \not\approx_E \text{pred}^m(\text{zero}) \) provided \(n \neq m \).

If follows that

\[
\{\text{succ}^n(\text{zero})| n > 0\} \cup \{\text{zero}\} \cup \{\text{pred}^n(\text{zero})| n > 0\}
\]

is a set of representatives for \(T(\Sigma, \emptyset)/\approx_E \).

Example

Integers as a CADT

CADT: \(\Gamma = \Sigma = \{\text{zero}, \text{succ}, \text{pred}\}, \)
\(E = \{\text{succ} (\text{pred}(x)) = x, \text{pred} (\text{succ}(x)) = x\} \)

Implementation: \((Z, J)\) with
\(J(z) = 0, J(\text{succ}(x)) = x + 1, J(\text{pred}(x)) = x - 1 \)

- \((Z, J)\) is a \(\Sigma \)-algebra
- All identities are valid (as seen before)
- An easy term induction shows for all \(t \in T(\Sigma, \emptyset) \) that
 \- if \(t \approx_E \text{zero} \) then \(J(t) = 0 \),
 \- if \(t \approx_E \text{succ}^n(\text{zero}) \) then \(J(t) = n \), and
 \- if \(t \approx_E \text{pred}^n(\text{zero}) \) then \(J(t) = -n \).

Hence, if \(s \approx_E t \) then \(J(s) = J(t) \).
Conversely, if \(s \not\approx_E t \) then \(J(s) \neq J(t) \) because \(J \) maps different representatives to different integers.

Summary

Slogan
Calculating with ADT = applying term operations + determining set of representatives.