10 Randomized algorithms

Summer Term 2011

Jan-Georg Smaus

Randomized algorithms

Overview

- Classes of randomized algorithms
 - Quicksort
 - Randomized Quicksort
 - Randomized primality test
 - Cryptography

1. Classes of randomized algorithms

- Las Vegas algorithms
 - Always correct; expected running time "probably fast"
 - Example: randomized Quicksort

- Monte Carlo algorithms (mostly correct):
 - Probably correct; guaranteed running time
 - Example: randomized primality test

2. Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1. If \(r > l\)
 2. then choose pivot element \(p = A[r]\)
 3. \(m = \text{divide}(A, l, r)\)
 4. Divide \(A\) according to \(p\):
 \(A[l, \ldots, m - 1] \leq p \leq A[m + 1, \ldots, r]\)
 5. \(\text{Quicksort}(A, l, m - 1)\)
 6. \(\text{Quicksort}(A, m + 1, r)\)

The divide step
3. Randomized Quicksort

Algorithm: Quicksort

- **Input:** unsorted range \([l, r]\) in array \(A\)
- **Output:** sorted range \([l, r]\) in array \(A\)

1. if \(r > l\) then
2. randomly choose a pivot element \(p = A[i]\) in range \([l, r]\)
3. swap \(A[i]\) and \(A[r]\)
4. \(m = \text{divide}(A, l, r)\)
5. \(\ast\) Divide \(A\) according to \(p\):
6. \(\ast\) \([A[l], \ldots, A[m - 1]] \leq p \leq [A[m + 1], \ldots, A[r]]\)
7. \(\ast\) Quicksort\((A, l, m - 1)\)
8. \(\ast\) Quicksort\((A, m + 1, r)\)

Analysis

- Let \(S_i\) be the \(i\)-th smallest element
- \(S_1\) is chosen as pivot with probability \(1/n\):
 - Sub-problems of sizes \(0\) and \(n-1\)
 - \(\ast\)
 - \(\ast\)
 - \(\ast\)
 - \(\ast\)
- \(S_n\) is chosen as pivot with probability \(1/n\):
 - Sub-problems of sizes \(n-1\) and \(0\)
Analysis

Expected running time

\[E(T(n)) = \frac{1}{n} \sum_{k=0}^{n-1} (E(T(k)) + E(T(n-k-1))) + \Theta(n) \]

\[= \frac{2}{n} \sum_{k=0}^{n-1} E(T(k)) + \Theta(n) \]

(\Theta(n) because of the divide-procedure)

One can show that \(E(T(n)) = O(n \log n) \).

With high probability, bad inputs cannot spoil the performance.

4. Primality test

Definition:
An integer \(p > 2 \) is prime iff \(a | p \Rightarrow a = 1 \) or \(a = p \).

Algorithm: deterministic primality test (naive)
Input: integer \(n > 2 \)
Output: answer to the question: Is \(n \) prime?

if \(n = 2 \) then return true
if \(n \) even then return false
for \(i = 1 \) to \(\sqrt{\frac{n}{2}} \) do
if \(2i + 1 \) divides \(n \) then return false
return true

Complexity: \(E(n) \) where \(n \) is the input, but the input size is just \(\log n \).

Primality test

Goal:
Randomized method
- Polynomial time complexity (in the length of the input)
- If answer is "not prime", then \(n \) is not prime
- If answer is "prime", then the probability that \(n \) is not prime is at most \(p > 0 \)

\(k \) iterations: probability that \(n \) is not prime is at most \(p^k \).

Randomized primality test

Theorem: (Fermat’s little theorem)
If \(p \) prime and \(0 < a < p \), then \(a^{p-1} \mod p = 1 \). (I.e., \(p \) divides \(a^{p-1} – 1 \))

Definition:
\(n \) is pseudoprime to base \(a \), if \(n \) not prime and \(a^{n-1} \mod n = 1 \).

Example:
\(n = 11 \cdot 31 = 341 \), \(a = 2 \):
\(2^{340} \mod 341 = 1 \).
\(n = 341 \), \(a = 3 \):
\(3^{340} \mod 341 = 56 \neq 1 \)

Randomized primality test 1

1 Randomly choose \(a \in [2, n-1] \)
2 if \(a^{n-1} \mod n = 1 \) then \(n \) is possibly prime
3 else \(n \) is definitely not prime

Advantage: This only takes polynomial time.

Examples:
\(n = 17 \), \(a = 2 \):
\(2^{16} = 65536 \), \(65536 \mod 17 = 1 \).
\(n = 23 \), \(a = 2 \):
\(2^{22} = 4194304 \), \(4194304 \mod 23 = 1 \).
\(n = 341 \), \(a = 2 \):
\(2^{340} \mod 341 = 1 \).
17 and 23 are indeed prime, 341 is not!

Prob(\(n \) is not prim, but \(a^{n-1} \mod n = 1 \)) ?

Carmichael numbers

Problem: Carmichael numbers

Definition: An integer \(n \) is called Carmichael number if
for all \(a \) with GCD(a, n) = 1.

Example:
Smallest Carmichael number: \(561 = 3 \cdot 11 \cdot 17 \)
561 is pseudoprime to any base \(a \) that is not divisible by 3 or 11 or 17.
To show that 561 is not prime, we hence need a base \(a \) that is divisible by 3 or 11 or 17. This is still quite likely to find, but there are worse examples.
Randomized primality test 2

Theorem:
If \(p \) prime and \(0 < a < p \), then the only solutions to the equation
\(a^2 \mod p = 1 \)
are \(a = 1 \) and \(a = p - 1 \).

Definition:
\(a \) is called non-trivial square root of 1 mod \(n \), if
\(a^2 \mod n = 1 \) and \(a \neq 1, n - 1 \).

Example:
\(n = 35 \)
\(6^2 \mod 35 = 1 \)

Fast exponentiation

Idea:
During the computation of \(a^p \) (\(0 < a < n \) randomly chosen), which we need
for the first primality test, test as a byproduct whether there is a non-
trivial square root 1 mod \(n \).

Method for the computation of \(a^p \):

Case 1: \(n \) is even
\(a^p = a^{p/2} * a^{p/2} \)

Case 2: \(n \) is odd
\(a^p = a^{p-1} * a^{p-1} * a \)

Fast exponentiation

Example:
\(a^6 = (a^{31})^2 \)
\(a^{31} = (a^{15})^2 * a \)
\(a^{15} = (a^7)^2 * a \)
\(a^7 = (a^3)^2 * a \)

Fast exponentiation + squares

boolean isProbablyPrime;

power(int a, int p, int n) {
/* computes \(a^p \mod n \) and checks during the
computation whether there is an \(x \) with
\(x^2 \mod n = 1 \) and \(x \neq 1, n-1 \) */
 if (p == 0) return 1;
 x = power(a, p/2, n);
 result = (x * x) % n;
 if (result == 1 && x != 1 && x != n - 1) isProbablyPrime = false;
 if (p % 2 == 1)
 result = (a * result) % n;
 return result;
}

Fast exponentiation + squares

Complexity: \(O(\log^2 n \log p) \)

Combined Procedure Miller-Rabin

primalityTest(int n) {
/* carries out the randomized primality test for
a randomly selected \(a \)* /
 a = random(2, n -1);
 isProbablyPrime = true;
 result = power(a, n-1, n);
 if (result != 1 || !isProbablyPrime) return false;
 else return true;
}
Combined Procedure Miller-Rabin

Theorem:
If \(n \) is not prime, there are at most \(\frac{n-1}{4} \) integers \(0 < a < n \) for which the algorithm \texttt{primalityTest} fails. Hence the probability of failure is \(\frac{n-1}{4} < \frac{n}{n} = \frac{1}{4} \).

If for a number \(n \) we do \(\log n \) tests we get a probability of \(\left(\frac{1}{4}\right)^{\log n} = \frac{1}{n^2} \) of failure. E.g. we might take \(n \) around \(2^{100} \).

Application: cryptosystems

Traditional encryption of messages with secret keys

Disadvantages:
1. The key \(k \) has to be exchanged between A and B before the transmission of the message.
2. For messages between \(n \) parties \(n(n-1)/2 \) keys are required.

Advantage:
Encryption and decryption can be computed very efficiently.

Desired properties of cryptographic systems

- confidential transmission
- integrity of data
- authenticity of the sender
- reliable transmission

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:
1. a public key \(P_A \) accessible to every other participant
2. a private (or: secret) key \(S_A \) only known to A.

Encryption in a public-key cryptosystem

A sends a message \(M \) to B.

\[P_A(S_A(M)) = M \]

\(P_A \) is the inverse function of \(S_A \) and vice-versa.

3. \(S_A \) cannot be computed from \(P_A \) with reasonable effort.
Encryption in a public-key cryptosystem

1. A accesses B’s public key \(PB \) (from a public directory or directly from B).
2. A computes the encrypted message \(C = PB(M) \) and sends \(C \) to B.
3. After B has received message \(C \), B decrypts the message with his own private key \(SB : M = SB(C) \).

Generating a digital signature

1. A sends a digitally signed message \(M' \) to B:
2. A computes the digital signature \(\sigma \) for \(M' \) with her own private key: \(\sigma = SA(M') \)
3. A sends the pair \((M', \sigma) \) to B.
4. After receiving \((M', \sigma) \), B verifies the digital signature: \(PA(\sigma) = M' \)

\(\sigma \) can be verified by anybody via the public \(PA \).

RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes \(p \) and \(q \) of similar size, each with \(l+1 \) bits \((l \geq 500)\).
2. Let \(n = p \cdot q \)
3. Let \(e \) be a (small) integer that does not divide \((p - 1)(q - 1)\).
4. Calculate \(d = e^{-1} \mod (p - 1)(q - 1) \)
 i.e.:
 \[d \cdot e \equiv 1 \mod (p - 1)(q - 1) \]
5. Publish \(P = (e, n) \) as public key
6. Keep \(S = (d, p, q) \) as private key

Divide message (described in a binary string) in blocks of size \(2^l \).
Interpret each block \(M \) as a binary number: \(0 \leq M < 2^l \cdot l^2 \)

\[P(M) = Me \mod n \]
\[S(M) = M^d \mod n \]

P and S are inverses

We have (some basic math ...)

\[M^e \equiv 1 \mod p \]
\[M^e \equiv 1 \mod q \]
\[M^e \equiv 1 \mod p \cdot q \]

and hence

\[S(M) = (M^e)^d \mod n \]
\[= M \mod n \]

The other direction is analogous.
S is hard to compute

This is unproven!

According to current knowledge, to compute d from e one would need to know p and q.

Also according to current knowledge, computing p and q from n is hard.

Even the fastest computers have never cracked RSA!

Summary

- We have seen two randomised algorithms:
 - Quicksort
 - Prime test
- We have also seen an application of big prime numbers: cryptography.