10 Randomized algorithms

Summer Term 2011

Jan-Georg Smaus
Randomized algorithms

Overview

- Classes of randomized algorithms
- Quicksort
- Randomized Quicksort
- Randomized primality test
- Cryptography
1. Classes of randomized algorithms

- **Las Vegas** algorithms
 always correct; expected running time “probably fast”

 Example: randomized Quicksort

- **Monte Carlo** algorithms (mostly correct):
 probably correct; guaranteed running time

 Example: randomized primality test
2. Quicksort

Unsorted range \(A[l, r] \) in array \(A \)

\[
\begin{align*}
A[l \ldots r-1] & \quad p \\
A[l \ldots m - 1] & \quad p & A[m + 1 \ldots r] \\
\end{align*}
\]
Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1. if \(r > l\)

2. then choose pivot element \(p = A[r]\)

3. \(m = \text{divide}(A, l, r)\)

 /* Divide \(A\) according to \(p\):

 \(A[l],...,A[m - 1] \leq p \leq A[m + 1],...,A[r]\)
 */

4. Quicksort\((A, l, m - 1)\)

 Quicksort \((A, m + 1, r)\)
The divide step
The divide step
The divide step
The *divide* step

\[
\text{divide}(A, l, r):
\]

- returns the index of the pivot element in \(A\)
- can be done in time \(O(r - l)\)
Worst case input

n elements:

Running time: $(n-1) + (n-2) + \ldots + 2 + 1 = n \cdot (n-1)/2 = \Omega(n^2)$
3. Randomized Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1. if \(r > l\)
2. then randomly choose a pivot element \(p = A[i]\) in range \([l, r]\)
3. swap \(A[i]\) and \(A[r]\)
4. \(m = \text{divide}(A, l, r)\)

 /* Divide \(A\) according to \(p\):
 \[
 A[l], \ldots, A[m - 1] \leq p \leq A[m + 1], \ldots, A[r]
 *
 */
5. Quicksort\((A, l, m - 1)\)
6. Quicksort\((A, m + 1, r)\)
n elements; let S_i be the i-th smallest element

- S_1 is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes 0 and $n-1$
 -
 -
 -

- S_k is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes $k-1$ and $n-k$
 -
 -
 -

- S_n is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes $n-1$ and 0
Analysis 1

Expected running time:

\[
E(T(n)) = \frac{1}{n} \sum_{k=0}^{n-1} (E(T(k)) + E(T(n-k-1))) + O(n)
\]

\[
= \frac{2}{n} \sum_{k=0}^{n-1} E(T(k)) + O(n)
\]

(\(O(n)\) because of the divide-procedure)

One can show that \(E(T(n)) \in O(n \log n)\).

With high probability, bad inputs cannot spoil the performance.
4. Primality test

Definition:
An integer \(p \geq 2 \) is prime iff \((a | p \Rightarrow a = 1 \text{ or } a = p) \).

Algorithm: deterministic primality test (naive)

Input: integer \(n \geq 2 \)

Output: answer to the question: Is \(n \) prime?

- if \(n = 2 \) then return true
- if \(n \) even then return false
- for \(i = 1 \) to \(\sqrt{n}/2 \) do
 - if \(2i + 1 \) divides \(n \)
 - then return false
 return true

Complexity: \(\Theta(\sqrt{n}) \) where \(n \) is the input, but the input size is just \(\log n \).
Goal:
Randomized method
 • Polynomial time complexity (in the length of the input)
 • If answer is “not prime”, then n is not prime
 • If answer is “prime”, then the probability that n is not prime is at most $p > 0$

k iterations: probability that n is not prime is at most p^k.
Randomized primality test

Theorem: (Fermat’s little theorem)
If p prime and $0 < a < p$, then

$$a^{p-1} \mod p = 1.$$ (i.e., p divides $a^{p-1} - 1$)

Definition:
n is pseudoprime to base a, if n not prime and

$$a^{n-1} \mod n = 1.$$

Example: $n = 11 \times 31 = 341$, $a = 2$

$$2^{340} \mod 341 = 1$$

but: $n = 341$, $a = 3$

$$3^{340} \mod 341 = 56 \neq 1$$
Randomized primality test 1

1 Randomly choose \(a \in [2, n-1] \)
2 \textbf{if} \(a^{n-1} \mod n = 1 \)
3 \textbf{then} \(n \) is possibly prime
4 \textbf{else} \(n \) is definitely not prime

Advantage: This only takes polynomial time.

\textbf{Examples:} \(n = 17, \ a = 2: 2^{16} = 65536. 65536 \mod 17 = 1. \)
\(n = 23, \ 2^{22} = 4194304. 4194394 \mod 23 = 1. \)
\(n = 341, \ 2^{340} \mod 341 = 1. \)

17 and 23 are indeed prime, 341 is not!

\(\text{Prob} (n \text{ is not prim, but } a^{n-1} \mod n = 1) \ ? \)
Carmichael numbers

Problem: Carmichael numbers

Definition: An integer n is called **Carmichael number** if

$$a^{n-1} \mod n = 1$$

for all a with $\gcd(a, n) = 1$. (GCD = greatest common divisor)

Example:
Smallest Carmichael number: $561 = 3 \cdot 11 \cdot 17$

561 is **pseudoprime** to any base a that is not divisible by 3 or 11 or 17.

To show that 561 is not prime, we hence need a base a that is divisible by 3 or 11 or 17. This is still quite likely to find, but there are worse examples.
Theorem:
If p prime and $0 < a < p$, then the only solutions to the equation

$$a^2 \mod p = 1$$

are $a = 1$ and $a = p - 1$.

Definition:
a is called non-trivial square root of 1 mod n, if

$$a^2 \mod n = 1 \text{ and } a \neq 1, n - 1.$$

Example: $n = 35$

$$6^2 \mod 35 = 1$$
Fast exponentiation

Idea:
During the computation of \(a^{n-1} \) (\(0 < a < n \) randomly chosen), which we need for the first primality test, test as a byproduct whether there is a non-trivial square root \(1 \mod n \).

Method for the computation of \(a^n \):

Case 1: [\(n \) is even]
\[
a^n = a^{n/2} \times a^{n/2}
\]

Case 2: [\(n \) is odd]
\[
a^n = a^{(n-1)/2} \times a^{(n-1)/2} \times a
\]
Fast exponentiation

Example:

\[a^{62} = (a^{31})^2 \]
\[a^{31} = (a^{15})^2 \times a \]
\[a^{15} = (a^{7})^2 \times a \]
\[a^{7} = (a^{3})^2 \times a \]
\[a^{3} = (a)^2 \times a \]

To compute \(a^n \), the exponents are obviously divided by 2 (at least) in each step. Hence there are \(O(\log n) \) intermediate steps.

In each intermediate step, we multiply and compute the square for operands of number size \(O(a^n) \) and hence representation size \(O(\log a^n) \), leading to \(O(\log^2 a^n) \) for each intermediate step.

Overall complexity: \(O(\log^2 a^n \log n) \)
boolean isProbablyPrime;

power(int a, int p, int n) {
 /* computes $a^p \mod n$ and checks during the computation whether there is an x with $x^2 \mod n = 1$ and $x \neq 1, \ n-1$ */

 if (p == 0) return 1;
 x = power(a, p/2, n)
 result = (x * x) % n;
Fast exponentiation + squares

/* check whether \(x^2 \mod n = 1 \) and \(x \neq 1, n-1 \) */
if (result == 1 && x != 1 && x != n - 1)
 isProbablyPrime = false;

if (p % 2 == 1)
 result = (a * result) % n;

return result;

Complexity: \(O(\log^2 n \log p) \)
Combined Procedure Miller-Rabin

```c
primalityTest(int n) {
  /* carries out the randomized primality test for
   a randomly selected a */

  a = random(2, n-1);

  isProbablyPrime = true;

  result = power(a, n-1, n);

  if (result != 1 || !isProbablyPrime)
    return false;
  else
    return true;
}
```
Theorem:

If n is not prime, there are at most \(\frac{n-9}{4} \) integers \(0 < a < n \), for which the algorithm `primalityTest` fails. Hence the probability of failure is

\[
\frac{n-9}{4} < \frac{n}{4} = \frac{1}{4}
\]

If for a number n we do $\log n$ tests we get a probability of

\[
\left(\frac{1}{4}\right)^{\log n} = \frac{1}{n^2}
\]

Of failure. E.g. we might take n around 2^{500}.
Traditional encryption of messages with secret keys

Disadvantages:
1. The key k has to be exchanged between A and B before the transmission of the message.
2. For messages between n parties $n(n-1)/2$ keys are required.

Advantage:
Encryption and decryption can be computed very efficiently.
- confidential transmission
- integrity of data
- authenticity of the sender
- reliable transmission
Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:

1. a public key P_A accessible to every other participant
2. a private (or: secret) key S_A only known to A.
Public-key cryptosystems

$D = \text{set of all legal messages, e.g. the set of all bit strings of finite length}$

$$P_A, S_A : D \rightarrow D$$

Three conditions:

1. P_A and S_A can be computed efficiently

2. $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$
 (P_A is the inverse function of S_A and vice-versa)

3. S_A cannot be computed from P_A with reasonable effort.
A sends a message M to B.

Dear Bob,
I just checked the new ...

#*k- + ;}?,
@-) #$<9
{o7::-&$3
(-##!]?8
...

Dear Bob,
I just checked the new ...
Encryption in a public-key cryptosystem

1. \(A \) accesses \(B \)'s public key \(P_B \) (from a public directory or directly from \(B \)).

2. \(A \) computes the encrypted message \(C = P_B(M) \) and sends \(C \) to \(B \).

3. After \(B \) has received message \(C \), \(B \) decrypts the message with his own private key \(S_B \): \(M = S_B(C) \)
Generating a digital signature

A sends a digitally signed message M' to B:

1. A computes the digital signature σ for M' with her own private key:
 \[\sigma = S_A(M') \]

2. A sends the pair (M', σ) to B.

3. After receiving (M', σ), B verifies the digital signature:
 \[P_A(\sigma) = M' \]

σ can be verified by anybody via the public P_A.

22.06.2011
Theory 1 - Randomized algorithms
32
RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and q of similar size, each with $l+1$ bits ($l \geq 500$).

2. Let $n = p \cdot q$

3. Let e be a (small) integer that does not divide $(p - 1) \cdot (q - 1)$.

4. Calculate $d = e^{-1} \mod (p - 1)(q - 1)$

 i.e.:

 $$d \cdot e \equiv 1 \mod (p - 1)(q - 1)$$
5. Publish $P = (e, n)$ as public key

6. Keep $S = (d, p, q)$ as private key

Divide message (described in a binary string) in blocks of size 2^l.
Interpret each block M as a binary number: $0 \leq M < 2^{2l}$

$$P(M) = M^e \mod n \quad S(M) = M^d \mod n$$
RSA has the desired properties ...

We have to show that

1. P_A and S_A can be computed efficiently.
2. $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$
 (P_A is the inverse function of S_A and vice-versa)
3. S_A cannot be computed from P_A with reasonable effort.

1 is fulfilled because exponentiation can be computed efficiently.
P and S are inverses

We have (some basic math ...)

\[M^{(p-1)\cdot(q-1)} \equiv 1 \mod p \]
\[M^{(p-1)\cdot(q-1)} \equiv 1 \mod q \]
\[M^{(p-1)\cdot(q-1)} \equiv 1 \mod p \cdot q \]

and hence

\[S(P(M)) \equiv (M^e)^d \mod n \]
\[\equiv M^{e\cdot d} \mod n \]
\[\equiv M^{1+r\cdot(p-1)\cdot(q-1)} \mod n \]
\[\equiv M \cdot (M^{(p-1)\cdot(q-1)})^r \mod n \]
\[\equiv M \mod n \]

The other direction is analogous.
This is unproven!

According to current knowledge, to compute d from e one would need to know p and q.

Also according to current knowledge, computing p and q from n is hard.

Even the fastest computers have never cracked RSA!
We have seen two randomised algorithms:
- Quicksort
- Prime test

We have also seen an application of big prime numbers: cryptography.