9 Dynamic tables

Summer Term 2011

Jan-Georg Smaus
Problem:
 Maintenance of a table under the operations \texttt{insert} and \texttt{delete} such that
 \begin{itemize}
 \item the table size can be adjusted to the number of elements
 \item a fixed portion of the table is always filled with elements
 \item the costs for \(n \) insert or delete operations are in \(O(n) \).
 \end{itemize}

Organisation of the table: hash table, heap, stack, etc.

\textbf{Load factor} \(\alpha_T \): fraction of table spaces of \(T \) which are occupied.

\textbf{Cost model:}
 Insertion or deletion of an element causes cost 1, if the table is not filled yet.
 If the table size is changed, all elements must be copied.
class dynamicTable {
 private int [] table;
 private int size;
 private int num;
 dynamicTable () {
 table = new int [1]; // initialize empty table
 size = 1;
 num = 0;
 }
}
Expansion strategy: insert

Double the table size whenever an element is inserted in the fully occupied table!

```java
public void insert (int x) {
    if (num == size) {
        int[] newTable = new int[2*size];
        for (int i=0; i < size; i++)
            insert table[i] in newTable;
        table = newTable;
        size = 2*size;
    }
    insert x in table;
    num = num + 1;
}
```
Insert operation in an initially empty table

$t_i = \text{cost of the } i\text{-th insert operation}$

Worst case:

$t_i = 1$, if the table was not full before operation i
$t_i = (i - 1) + 1$, if the table was full before operation i

Hence, n insert operations require costs of at most

$$\sum_{i=1}^{n} (i) = O(n^2)$$

Amortized worst case:

Aggregate analysis, accounting method, potential method
Let the real cost of the ith insertion be t_i. We want to define the amortized cost a_i such that

$$\sum a_i \geq \sum t_i \in O(n).$$
Potential method

A table with
- \(k = T.num \) elements and
- \(s = T.size \) spaces

Potential function

\[
\phi(T) = 2k - s
\]

We also write \(\phi_i \) for \(\phi(T) \) after the \(i \)th insert operation.

We now define \(a_i = \phi_i - \phi_{i-1} + t_i \).
Properties of the potential function

Properties

- \(\phi_0 = \phi(T_0) = \phi \text{ (empty table)} = -1 \)
- For all \(i \geq 1 : \phi_i = \phi(T_i) \geq 0 \)
 Since \(\phi_n - \phi_0 \geq 0 \), \(\sum a_i \) is an upper bound for \(\sum t_i \).
- Directly before an expansion, \(k = s \), hence \(\phi(T) = k = s \).
- Directly after an expansion, \(k = s/2 \), hence \(\phi(T) = 2k - s = 0 \).
Amortized cost of insert (1)

\[k_i = \# \text{ elements in } T \text{ after the } i\text{-th operation} \]

\[s_i = \text{ table size of } T \text{ after the } i\text{-th operation} \]

Case 1: [i-th operation does not trigger an expansion]

\[a_i = \phi_i - \phi_{i-1} + t_i = (2k_i - s_i) - (2k_{i-1} - s_{i-1}) + t_i = 2(k_i - k_{i-1}) - (s_i - s_{i-1}) + t_i = 2 - 0 + 1 \leq 3. \]
Case 2: [i-th operation triggers an expansion]

\[a_i = \phi_i - \phi_{i-1} + t_i = (2k_i - s_i) - (2k_{i-1} - s_{i-1}) + t_i = \]

\[2(k_i - k_{i-1}) - (s_i - s_{i-1}) + i = \]

\[2(1) - (2s_{i-1} - s_{i-1}) + i = \]

\[2 - s_{i-1} + i = \]

\[2 - (l - 1) + i \leq 3. \]
Insertion and deletion of elements

Now: contract table, if the load is too small!

Goals:
(1) Load factor is always bounded below by a constant
(2) Amortized cost of a single insert or delete operation is constant.

First attempt:
• Expansion: same as before
• Contraction: halve the table size as soon as table is less than \(\frac{1}{2} \) occupied (after the deletion)!
"Bad" sequence of insert and delete operations

Cost

\[\frac{n}{2} \text{ times insert} \]
\[(\text{table fully occupied)} \]
\[I: \text{ expansion} \]
\[D, D: \text{ contraction} \]
\[I, I: \text{ expansion} \]
\[D, D: \text{ contraction} \]

Total cost of the sequence
\[I n/2, I, D, D, I, I, D, D, \ldots \text{ of length } n: \Omega(n^2) \]
Second attempt

Expansion: (as before) double the table size, if an element is inserted in the full table.

Contraction: As soon as the load factor is below \(\frac{1}{4} \), halve the table size.

Hence:

At least \(\frac{1}{4} \) of the table is always occupied, i.e.

\[
\frac{1}{4} \leq \alpha(T) \leq 1
\]

Cost of a sequence of insert and delete operations?
Analysis: insert and delete

\[k = T\text{.num}, \quad s = T\text{.size}, \quad \alpha = k/s \]

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
s/2 - k, & \text{if } \alpha < 1/2
\end{cases}
\]

Homework: Check \(\sum a_i \geq \sum t_i \)
Analysis: insert and delete

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
\]

Directly after an expansion or contraction of the table:

\[s = 2k, \text{ hence } \phi(T) = 0\]
insert

i-th operation: $k_i = k_{i-1} + 1$

Case 1: $\alpha_{i-1} \geq \frac{1}{2}$

Case 2: $\alpha_{i-1} < \frac{1}{2}$

Case 2.1: $\alpha_i < \frac{1}{2}$
Case 2.2: $\alpha_i \geq \frac{1}{2}$
Case 2.1: \(\alpha_{i-1} < \frac{1}{2}, \alpha_i < \frac{1}{2} \) (no expansion)

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
\]
Case 2.2: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i \geq \frac{1}{2}$ (no expansion)

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq \frac{1}{2} \\
\frac{s}{2} - k, & \text{if } \alpha < \frac{1}{2}
\end{cases}$$
$k_i = k_{i-1} - 1$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.1: deletion causes no contraction

$s_i = s_{i-1}$

Potential function ϕ

$$
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
$$
\[k_i = k_{i-1} - 1 \]

Case 1: \(\alpha_{i-1} < \frac{1}{2} \)

Case 1.2: \(\alpha_{i-1} < \frac{1}{2} \) deletion causes a contraction

\[2s_i = s_{i-1} \]

\[k_{i-1} = \frac{s_{i-1}}{4} \]

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq \frac{1}{2} \\
\frac{s}{2} - k, & \text{if } \alpha < \frac{1}{2}
\end{cases}
\]
Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.1: $\alpha_{i-1} \geq \frac{1}{2}$

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}$$
Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.2: $\alpha_i < \frac{1}{2}$

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
2s - k, & \text{if } \alpha < 1/2
\end{cases}$$