6 Hashing

Summer Term 2011

Jan-Georg Smaus
The dictionary problem

Different approaches to the dictionary problem:

- Previously: Structuring the set of currently stored keys: trees (lists, graphs)

- Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by partitioning the universe of possible keys.

The position of the data element in the memory is given by computing a so-called hash value directly from the key.
Hashing

Dictionary problem:
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of d
→ no comparisons
→ constant time

Data structure: linear field (array) of size m
Hash table

The memory is divided into m containers (buckets) of the same size.
Example

- Suppose the keys are numbers between 1, ..., \(n \), and \(m \ll n \). Then we might use “mod \(m \)” as a hash function. Each key \(i \) is stored in bucket \(i \mod m \).
Implementation in Java

class TableEntry {
 private Object key, value;
}

abstract class HashTable {
 private TableEntry[] tableEntry;
 private int capacity;
 // Constructor
 HashTable (int capacity) {
 this.capacity = capacity;
 tableEntry = new TableEntry [capacity];
 for (int i = 0; i <= capacity-1; i++)
 tableEntry[i] = null;
 }
 // the hash function
 protected abstract int h (Object key);
 // insert element with given key and value (if not there already)
 public abstract void insert (Object key, Object value);
 // delete element with given key (if there)
 public abstract void delete (Object key);
 // locate element with given key
 public abstract Object search (Object key);
} // class hashTable
Hashing - problems

1. **Size of the hash table**
 Only a small subset S of all possible keys (the universe) U actually occurs. The size of the hash table should be not too much bigger than the number of occurring keys.

2. **Calculation of the address of a data set**
 - keys are not necessarily integers
 - index depends on the size of hash table

In Java:

```java
public class Object {
    ...
    public int hashCode() {...}  
    ...
}
```

The universe U should be distributed as *evenly* as possibly to the numbers $0,\ldots,m-1$.
Hash function (1)

Set of keys S

Universe U of all possible keys

hash function h

hash table T

$h(s) = \text{hash address}$

$h(s) = h(s') \iff s \text{ and } s' \text{ are synonyms with respect to } h$

address collision
Hash function (2)

Definition: Let U be a universe of possible keys and $\{B_0, \ldots, B_{m-1}\}$ a set of m buckets for storing elements from U. Then a hash function

$$h : U \rightarrow \{0, \ldots, m - 1\}$$

maps each key $s \in U$ to a value $h(s)$ (and the corresponding element to the bucket $B_{h(s)}$).

- The indices of the buckets also called hash addresses, the complete set of buckets is called hash table.

| B_0 | B_1 | \ldots | B_{m-1} |
A hash function h calculates for each key s the index of the associated bucket.

It would be ideal if the mapping of a data set with key s to a bucket $h(s)$ was unique (one-to-one): insertion and lookup could be carried out in constant time ($O(1)$).

In reality, there will be collisions: several elements can be mapped to the same hash address. Collisions have to be addressed (in one way or another).
Hashing methods

Example for U: all names in Java with length $\leq 40 \rightarrow |U| = 62^{40}$

If $|U| > m$: address collisions are inevitable

Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

Load factor α: $\alpha = \frac{\# \text{ of stored keys}}{\text{size of hash table}} = \frac{|S|}{m} = \frac{n}{m}$

Assumption: table size m is fixed
Requirements for good hash functions

Requirements

- A collision occurs if the bucket $B_{h(s)}$ for a newly inserted element with key s is not empty.

- A hash function h is called perfect for a set S of keys if no collisions occur for S.

- If h is perfect and $|S| = n$, then $n \leq m$. The load factor of the hash table is $n/m \leq 1$.

- A hash function is well chosen if
 - the load factor is as high as possible,
 - for many sets of keys the number of collisions is as small as possible,
 - it can be computed efficiently.
Example of a hash function

Example: hash function for strings

```java
public static int h (String s){
    int k = 0, m = 13;
    for (int i=0; i < s.length(); i++)
        k += (int)s.charAt (i);
    return ( k%m );
}
```

The following hash addresses are generated for $m = 13$.

<table>
<thead>
<tr>
<th>key s</th>
<th>$h(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>0</td>
</tr>
<tr>
<td>Hallo</td>
<td>2</td>
</tr>
<tr>
<td>SE</td>
<td>9</td>
</tr>
<tr>
<td>Algo</td>
<td>10</td>
</tr>
</tbody>
</table>

The greater the choice of m, the closer to perfect h becomes.
Probability of collision (1)

Choice of the hash function
- The requirements **high load factor** and **small number of collisions** are in conflict with each other. We need to find a suitable compromise.
- For the set S of keys with $|S| = n$ and buckets $B_0, ..., B_{m-1}$:
 - for $n > m$ conflicts are inevitable
 - for $n < m$ there is a probability $P_k(n,m)$ for the occurrence of at least one collision.

How can we find an estimate for $P_k(n,m)$?
- For any key s the probability that $h(s) = j$ with $j \in \{0, ..., m - 1\}$ is:
 $$P_k[h(s) = j] = \frac{1}{m},$$
 provided that there is an equal distribution.
- We have $P_k(n,m) = 1 - P_{\neg k}(n,m)$,
 if $P_{\neg k}(n,m)$ is the probability that storing of n elements in m buckets leads to no collision.
Probability of collision (2)

On the probability of collisions

- If \(n \) keys are distributed sequentially to the buckets \(B_0, \ldots, B_{m-1} \) (with equal distribution), each time we have \(P[h(s) = j] = 1/m \).
- The probability \(P(i) \) for no collision in step \(i \) is \(P(i) = (m - (i - 1))/m \).
- Hence, we have

\[
P_K(n, m) = 1 - P(1) \times P(2) \times \cdots \times P(n) = 1 - \frac{m(m-1)\cdots(m-n+1)}{m^n}
\]

For example, if \(m = 365 \), \(P(23) > 50\% \) and \(P(50) \approx 97\% \) (“birthday paradox”)
Hash functions used in practice:

- see: D.E. Knuth: *The Art of Computer Programming*
- For $U = \text{integer}$ the *divisions-residue method* is used:
 $$h(s) = (a \times s) \mod m \ (a \neq 0, \ a \neq m, \ m \text{ prime})$$

- A more complicated example: For strings of characters of the form $s = s_0s_1 \ldots s_{k-1}$ one can use
 $$h(s) = \left(\left(\sum_{i=0}^{k-1} B^i \ s_i \right) \mod 2^w \right) \mod m$$

 e.g. $B = 131$ and $w = \text{word width (bits) of the computer}$ ($w = 32$ or $w = 64$ is common).
Simple hash functions

Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method

\[h(k) = k \mod m \]

How to choose of \(m \)?

Examples:

a) \(m \) even \(\rightarrow h(k) \) even \(\iff \) \(k \) even

Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)

b) \(m = 2^p \) yields the \(p \) lowest dual digits of \(k \)

Rule: Choose \(m \) prime, and \(m \) is not a factor of any \(r^i \pm j \),
where \(i \) and \(j \) are small, non-negative numbers and \(r \) is the radix of the number representation.
Multiplicative method (1)

- Choose constant θ, $0 < \theta < 1$

- 1. Compute $k\theta \mod 1 = k\theta - \lfloor k\theta \rfloor$

- 2. $h(k) = \lfloor m(k\theta) \mod 1 \rfloor$
Multiplicative method (2)

- Example:

\[
\theta = \frac{\sqrt{5}-1}{2} \approx 0.6180339887
\]
\[
k = 123456
\]
\[
m = 10000
\]
\[
h(k) = \left[10000(123456 \cdot 0.6180339887 \ldots \mod 1)\right]
\]
\[
= \left[10000(76300.0041089472 \ldots \mod 1)\right]
\]
\[
= \left[41.089472 \ldots\right]
\]
\[
= 41
\]

- Of all numbers \(0 \leq \theta \leq 1, \frac{\sqrt{5}-1}{2} \) leads to the most even distribution.
Universal hashing

- **Problem**: if h is fixed, then there are $S \subseteq M$ with many collisions

- **Idea of universal hashing**: Choose hash function h randomly

- H finite set of hash functions
 \[h \in H : U \rightarrow \{0, \ldots, m-1\} \]

- **Definition**: H is universal, if for arbitrary $x,y \in U$:
 \[\left| \left\{ h \in H : h(x) = h(y) \right\} \right| \leq \frac{1}{m} \]

- Hence: if $x, y \in U$, H universal, $h \in H$ picked randomly
 \[Pr_H(h(x) = h(y)) \leq \frac{1}{m} \]
A universal class of hash functions

Assumptions:

- \(|U| = p\) (\(p\) prime) and \(U = \{0, \ldots, p-1\}\)
- Let \(a \in \{1, \ldots, p-1\}\), \(b \in \{0, \ldots, p-1\}\) and \(h_{a,b} : U \rightarrow \{0,\ldots,m-1\}\) be defined as follows

\[
h_{a,b}(x) = ((ax+b) \mod p) \mod m
\]

Then:
The set

\[
H = \{h_{a,b} | 1 \leq a < p, 0 \leq b < p\}
\]

is a universal class of hash functions.
Universal hashing – example

Hash table T of size 3, $|U| = 5$

Consider the 20 functions (set H):

- $x+0$
- $2x+0$
- $3x+0$
- $4x+0$
- $x+1$
- $2x+1$
- $3x+1$
- $4x+1$
- $x+2$
- $2x+2$
- $3x+2$
- $4x+2$
- $x+3$
- $2x+3$
- $3x+3$
- $4x+3$
- $x+4$
- $2x+4$
- $3x+4$
- $4x+4$

each (mod 5) (mod 3)

and the keys 1 und 4

For 4 our of 20 functions, we get a collision:

- $(1*1+0) \mod 5 \mod 3 = 1 = (1*4+0) \mod 5 \mod 3$
- $(1*1+4) \mod 5 \mod 3 = 0 = (1*4+4) \mod 5 \mod 3$
- $(4*1+0) \mod 5 \mod 3 = 1 = (4*4+0) \mod 5 \mod 3$
- $(4*1+4) \mod 5 \mod 3 = 0 = (4*4+4) \mod 5 \mod 3$
Possible ways of treating collisions

Treatment of collisions:

- Collisions are treated differently in different methods.

- A data set with key s is called a colliding element if bucket $B_{h(s)}$ is already taken by another data set.

- What can we do with colliding elements?
 1. **Chaining**: Implement the buckets as linked lists. Colliding elements are stored in these lists.
 2. **Open Addressing**: Colliding elements are stored in other vacant buckets. During storage and lookup, these are found through so-called probing.