3 Trees: traversal and analysis of standard search trees

Summer Term 2011

Jan-Georg Smaus
Binary Search Trees

- Binary trees for storing sets of keys (in the internal nodes of trees), such that the operations
 - find
 - insert
 - delete (remove)

 are supported.

- Search tree property: All keys in the left subtree of a node p are smaller than the key of p, and the key of p is smaller than all keys in the right subtree of p.

- Implementation:
Tree structure depends on the order of insertions into the initially empty tree.

Height can increase linearly, but it can also be in $O(\log n)$, more precisely $\lceil \log_2 (n+1) \rceil$.
Traversals of trees

Traversals of the nodes of a tree

- for output
- for calculating the sum, average, number of keys ...
- for changing the structure

Most important traversal orders:

1. **Preorder** = NLR (Node-Left-Right)
 - First visit the root, then recursively the left and right subtree (if existent)

2. **Postorder** = LRN

3. **Inorder** = LNR

4. The mirror image versions of 1-3
Preorder traversal is recursively defined as follows: Let p be the root.

- Visit p,
- traverse the left subtree of p in preorder,
- traverse the right subtree of p in preorder.
Preorder implementation

// Preorder Node-Left-Right
void preOrder (){
 preOrder(root);
 System.out.println ();
}

void preOrder(SearchNode n){
 if (n == null) return;
 System.out.print (n.content+" ");
 preOrder(n.left);
 preOrder(n.right);
}

// Postorder Left-Right-Node
void postOrder (){
 postOrder(root);
 System.out.println ();
}

// ...

The traversal order is: first the left subtree, then the root, then the right subtree:

```java
// Inorder Left-Node-Right
void inOrder()
{
    inOrder(root);
    System.out.println ( );
}
// ...
```
Example

Preorder: 17, 11, 7, 14, 12, 22
Postorder: 7, 12, 14, 11, 22, 17
Inorder: 7, 11, 12, 14, 17, 22
Example for Search, Insertion, Deletion
Idea: Create a search tree for the input sequence and output the keys by an inorder traversal.

Remark: Depending on the input sequence, the search tree may degenerate.

Complexity: Depends on internal path length

Worst case: Sorted input: $\Omega(n^2)$ steps.

Best case: We get a complete search tree of minimal height of about $\log n$. Then n insertions and outputs are possible in time $O(n \log n)$.

Average case: Later ...
Analysis of search trees

Two possible approaches to determine the internal path length:

1. **Random tree analysis**, i.e. average over all possible permutations of keys to be inserted (into the initially empty tree).

2. **Shape analysis**, i.e. average over all structurally different trees with n keys.

Difference of the expected values for the internal path:

\[1. \approx 1.386 \ n \ \log_2 n - 1.846 \cdot n + O(\log n) \]

\[2. \approx n \cdot \sqrt{\pi} n + O(n) \]
Reason for the difference

Random tree analysis counts more balanced trees more often.
Internal path length

Internal path length I: measure for judging the quality of a search tree t.

Recursive definition:

1. If t is empty, then $I(t) = 0$.

2. For a tree t with left subtree t_l and right subtree t_r:

 $$I(t) = I(t_l) + I(t_r) + \# \text{ inner nodes of } t$$

Apparently:

$$I(t) = \sum_p \left(\text{depth}(p) + 1 \right)$$

p internal node in t
For a tree t the average search path length is defined by:

$$D(t) := I(t)/n, n = \# \text{ nodes in } t.$$

Question: What is the size of $D(t)$ in the

- best
- worst
- average

case for a tree t with n internal nodes?
Internal path: best case

We obtain a complete binary tree
Internal path: worst case
Random trees

- Without loss of generality, let \(\{1,\ldots,n\} \) be the keys to be inserted.

- Let \(s_1,\ldots,s_n \) be a random permutation of these keys.

- Hence, the probability that \(s_1 \) has the value \(k \), \(P(s_1=k) = 1/n \).

- If \(k \) is the first key, \(k \) will be stored in the root.

- Then the left subtree contains \(k-1 \) elements (the keys 1, \ldots, \(k-1 \)) and the right subtree contains \(n-k \) elements (the keys \(k+1, \ldots,n \)).
Expected internal path length

- \(EL(n) \) : Expectation for the internal path length of a randomly generated binary search tree with \(n \) nodes

- Apparently we have:
 \[
 EI(0) = 0 \\
 EI(1) = 1 \\
 EI(n) = \frac{1}{n} \sum_{k=1}^{n} (EI(j - 1) + EI(n - k) + n)
 \\
 = n + \frac{1}{n} \left(\sum_{k=1}^{n} EI(k - 1) + \sum_{k=1}^{n} EI(n - k) \right)
 \\
 \]

- Assume: \(EI(n) = 1.386n \log_2 n - 1.846n + O(\log n) \).
Proof (1)

\[
EI(n + 1) = (n + 1) \cdot \frac{2}{n + 1} \cdot \sum_{k=0}^{n} (EI(k))
\]

and hence

\[
(n + 1) \cdot EI(n + 1) = (n + 1)^2 + 2 \cdot \sum_{k=0}^{n} (EI(k))
\]

\[
n \cdot EI = n^2 + 2 \cdot \sum_{k=0}^{n-1} (EI(k))
\]

From the last two equations it follows that

\[
(n + 1) \cdot EI(n + 1) - n \cdot EI(n) = 2n + 1 + 2 \cdot RI(n)
\]

\[
(n + 1) \cdot EI(n + 1) = (n + 2) \cdot EI(n) + 2n + 1
\]

\[
EI(n + 1) = \frac{2n + 1}{n + 1} + \frac{n + 2}{n + 1} \cdot EI(n).
\]
Proof (2)

By induction over n it is possible to show that for all $n \geq 1$:

$$EI(n) = 2(n + 1)H_n - 3n$$

$$H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$ is the n-th harmonic number,

which can be estimated as follows:

$$H_n = \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

where $\gamma = 0.5772\ldots$ the so-called Euler constant.
Proof (3)

Thus,

\[EI(n) = 2n \ln n - (3 - 2\gamma) \ast n + \ln n + 1 + 2\gamma + O \left(\frac{1}{n} \right) \]

and hence,

\[
\frac{EI(n)}{n} = 2 \ln n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots
\]

\[
= \frac{2}{\log_2 e} \ast \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots
\]

\[
= \frac{2 \log_{10} 2}{\log_{10} e} \ast \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots
\]

\[
= \frac{2}{\log_2 e} \ast \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots
\]

\[
\approx 1.386 \log_2 n - (3 - 2\gamma) + \frac{2 \ln n}{n} + \ldots
\]
Observation

- Search, insertion and deletion of a key in a randomly generated binary search tree with \(n \) keys can be done, on average, in \(O(\log_2 n) \) steps.

- In the worst case, the complexity can be \(\Omega(n) \).

- One can show that the average distance of a node from the root in a randomly generated tree is only about 40% above the optimal value.

- However, by the restriction to the symmetrical successor, the behaviour becomes worse.

- If \(n^2 \) update operations are carried out in a randomly generated search tree with \(n \) keys, the expected average search path is only \(\Theta(\sqrt{n}) \).
Typical binary tree for a random sequence of keys
Resulting binary tree after n^2 updates
Question: What is the average search path length of a binary tree with N internal nodes if the average is made over all structurally different binary trees with N internal nodes?

Answer: Let

$I_N = \text{total internal path length of all structurally different binary trees with } N \text{ internal nodes}$

$B_N = \text{number of all structurally different trees with } N \text{ internal nodes}$

Then $I_N/B_N =$
Number of structurally different binary trees
Total internal path length of all trees with N nodes

- For each tree \(t \) with left subtree \(t_l \) and right subtree \(t_r \):
The average search path length in a tree with N internal nodes (averaged over all structurally different trees with N internal nodes) is:

$$\frac{1}{N} \cdot \frac{I_N}{B_N}$$