The Dictionary Problem: Search Trees

Summer Term 2011

Jan-Georg Smaus

The Dictionary Problem

The dictionary problem can be described as follows:

Given: a set of objects (data) where each element can be identified by a unique key (integer, string, ...).

Goal: a structure for storing the set of objects such that at least the following operations (methods) are supported:
- search (find, access)
- insert
- delete

The Dictionary Problem (2)

The following conditions can influence the choice of a solution to the dictionary problem:
- The place where the data are stored: main memory, hard drive, tape, WORM (write once read multiple)
- The frequency of the operations:
 - mostly insertion and deletion (dynamic)
 - mostly search (static)
 - approximately the same frequencies
 - not known
- Other operations to be implemented:
 - Enumerate the set in a certain order (e.g. ascending by key)
 - Set operations: union, intersection, difference, quantity, ...
 - Split
 - Construct
- Measure for estimating the solution: average case, worst case, amortized worst case
- Order of executing the operations:
 - Sequential
 - Concurrent

The Dictionary Problem (3)

Different approaches to the dictionary problem:
- Structuring the complete universe of all possible keys: hashing
- Structuring the set of the actually occurring keys: lists, trees, graphs, ...

Trees (1)

Trees are
- generalized lists
 (each list element can have more than one successor)
- special graphs:
 - in general, a graph \(G = (V,E) \) consists of a set \(V \) of vertices and a set \(E \subset V \times V \) of edges.
 - the edges are either directed or undirected.
 - vertices and edges can be labelled (they contain further information).
- A tree is a connected acyclic graph, where:
 - all vertices \(k \) have exactly one path (a sequence of pairwise neighbouring edges) to the root
 - the parent (or: direct predecessor) of a node \(k \) is the first neighbour on the path from \(k \) to the root
 - the children (or: direct successors) are the other neighbours of \(k \)
 - the rank (or: outdegree) of a node \(k \) is the number of children of \(k \)

Trees (2)

Several kinds of trees can be distinguished:
- Undirected tree (with no designated root)
- Rooted tree (one node [= vertex] is designated as the root)
Trees (3)

- Rooted tree:
 - root: the only node that has no parent
 - leaf nodes (leaves): nodes that have no children
 - internal nodes: all nodes that are not leaves
 - order of a tree \(T \): maximum rank of a node in \(T \)
 - The notion tree is often used as a synonym for rooted tree.

- Ordered (rooted) tree:
 - the children of each node are somehow ordered, i.e., there is the "leftmost child", the "second child from the left", ..., the "rightmost child".
 - In the graphical representation of a tree, this is a-priori not the case. We have to explicitly state it.

- Binary tree: ordered tree of order 2; the children of a node (if there are 2) are referred to as left child and right child.

- Multiway tree: ordered tree of order > 2

Trees (4)

A more precise definition of the set \(M_d \) of the ordered rooted trees of order \((d \geq 1) \):

Consider a set of nodes \(V \).
- Each node in \(V \) is in \(M_d \)
- \(L_1, \ldots, L_d \in M_d \) and \(w \) a node in \(V \). Then \(w \) with the roots of \(L_1, \ldots, L_d \) as children (from left to right) is a tree \(t \in M_d \). The \(L_i \) are subtrees of \(t \).
- According to this definition each node has rank \(d \) (or rank 0).

Nodes of binary trees either have 0 or 2 children.
- Variation of the definition: allowing for rank \(\leq d \).
 - For binary trees, nodes with exactly 1 child could then also be permitted.

Illustration of the Definition

Examples

- tree
- not a tree (but two trees!)

Note that we chose to depict inner nodes as circles and leaves as boxes.

Structural Properties of Trees

- Depth of a node \(k \): # edges from the tree root until \(k \) (distance of \(k \) to the root)
- Height \(h(t) \) of a tree \(t \): maximum depth of a leaf in \(t \).

 Alternative (recursive) definition:
 - \(h(\text{leaf}) = 0 \)
 - \(h(t) = 1 + \max\{h(t_i) \mid \text{root of } t_i \text{ is a child of the root of } t \} \)
 - \(t_i \) is a subtree of \(t \)

- Level \(i \): all nodes of depth \(i \)
- Complete tree: tree where each non-empty level has the maximum number of nodes.
 - all leaves have the same depth.

Labelled Vertices

- We mentioned that vertices (and edges) in a graph may be labelled, but in the above definitions on trees, we did not talk about labels yet – the set of nodes \(V \) was a "black box".
- We now consider trees where either the inner nodes or the leaves or both are labelled.
Applications of Trees

Use of trees for the dictionary problem:
- **Node**: stores one data object
- **Tree**: stores a set of data
- Advantage (compared to hash tables): enumeration of the complete set of data (e.g., in ascending order) can be accomplished easily.

Standard Binary Search Trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)

Two alternative ways of storage:
- **Search trees**: keys are stored in internal nodes
 - Leaf nodes are empty (usually = null), they represent intervals between the keys
- **Leaf search trees**: keys are stored in the leaves
 - Internal nodes contain information in order to direct the search for a key

Search tree condition:
For each internal node \(k \): all keys in the left subtree \(t_l \) of \(k \) are less (<) than the key in \(k \) and all keys in the right subtree \(t_r \) of \(k \) are greater (>) than the key in \(k \).

Standard Binary Search Trees (2)

Leaves in the search tree represent intervals between keys of the internal nodes

How can the search for key \(s \) be implemented? (leaf = null)

```java
k = root;
while (k != null) {
    if (s == k.key) return true;
    if (s < k.key) k = k.left;
    else k = k.right;
}
return false;
```

Example

Search for key \(s \) ends in the internal node \(k \) with \(k.key = s \) or in the leaf whose interval contains \(s \)

Standard Binary Search Trees (3)

Leaf search tree:
- Keys are stored in leaf nodes
- Clues (routers) are stored in internal nodes, such that \(s_l \leq s_k < s_r \) (\(s_l \): key in left subtree, \(s_k \): router in \(k \), \(s_r \): key in right subtree)
- Choice of \(s \): maximum key in \(t_l \).
- Alternative convention (less common): require \(s_l < s_k \leq s_r \) and choose \(s \) as minimum key in \(t_r \).
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.

```
1
/ \
5 6
```

23.05.2011 Theory 1 - Search Trees

Standard Binary Search Trees (4)

How is the search for key s implemented in a leaf search tree? (leaf = node with 2 null pointers)

```java
k = root;
if (k == null) return false;
while (k.left != null) { // thus also k.right != null
    if (s <= k.key) k = k.left;
    else k = k.right;
} // now in the leaf
return s == k.key;
```

From now on ...

- In the following we always talk about search trees (not leaf search trees).

Standard Binary Search Trees (5)

```java
class SearchNode {
    int content;
    SearchNode left;
    SearchNode right;
    SearchNode (int c){ // Constructor for a node
        content = c; // without successor
        left = right = null;
    } //class SearchNode

class SearchTree {
    SearchNode root;
    SearchTree () { // Constructor for empty tree
        root = null;
    } // ...
}
```

Standard Binary Search Trees (6)

```java
/* Search for c in the tree */
boolean search (int c) { //
    return search (root, c);
}

boolean search (SearchNode n, int c){
    while (n != null) {
        if (c == n.content) return true;
        if (c < n.content) n = n.left;
        else n = n.right;
    }
    return false;
}
```
Standard Binary Search Trees (7)

Insertion of a node with key \(s \) in search tree \(t \):
- Search for \(s \) ends in a node with \(s \): don’t insert (otherwise, there would be duplicated keys)
- Search ends in leaf \(b \): make \(b \) an internal node with \(s \) as its key and two new leaves.

Tree remains a search tree!

Standard Binary Search Trees (8)

`
// Insert c into tree; return true if successful and false if c was in tree already` `*`
```java
boolean insert (int c) { // insert c
    if (root == null){
        root = new SearchNode (c);
        return true;
    } else return insert (root, c);
}
```

Standard Binary Search Trees (9)

```java
int height(){
    return height(root);
}
```
```java
int height(SearchNode n){
    if (n == null) return 0;
    else return 1 + Math.max(height(n.left),
    height(n.right));
}
/* Insert c into tree; return true if successful
    and false if c was in tree already */
boolean insert (int c) { // insert c
    if (root == null){
        root = new SearchNode (c);
        return true;
    } else return insert (root, c);
}
```

Standard Binary Search Trees (10)

```java
 boolean insert (ListNode n, int c){
    while (true){
        if (c == n.content) return false;
        if (c < n.content){
            if (n.left == null) {
                n.left = new ListNode (c);
                return true;
            } else n = n.left;
        } else { // c > n.content
            if (n.right == null) {
                n.right = new ListNode (c);
                return true;
            } else n = n.right;
        }
    }
}
```

Special cases

- The structure of the resulting tree depends on the order in which the keys are inserted. The minimal height is \(\lceil \log_2 (n+1) \rceil \) and the maximal height is \(n \).
- Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and 1, 3, 14, 15, 27, 39:

Standard Binary Search Trees (11)

A standard tree is created by iterative insertions in an initially empty tree.
- Which trees are more frequent/typical: the balanced or the degenerate ones?
- How costly is an insertion?

We will address these questions in the next chapter.
Deletion of a node with key s from a tree (while retaining the search tree property):
- Search for s.
 - If search fails: done.
 - Otherwise search ends in node k with $k.key = s$ and
 - k has no child, one child or two children:
 - (a) no child: done (set the parent's pointer to null instead of k)
 - (b) only one child: let k's parent v point to k's child instead of k
 - (c) two children: search for the smallest key in k's right subtree, i.e. go right and then to the left as far as possible until you reach p (the symmetrical successor of k); copy p key to k, delete p (which has at most one child, so follow step (a) or (b))

Symmetrical successor
Definition: A node q is called the symmetrical successor of a node p if q contains the smallest key greater than or equal to the key of p.

Observations:
- The symmetrical successor q of p is the leftmost node in the right subtree of p.
- The symmetrical successor has at most one child, which is the right child.

Finding the symmetrical successor
Observation: If p has a right child, the symmetrical successor always exists.
- First go to the right child of p.
- From there, always proceed to the left child until you find a node without a left child.

Idea of the delete operation
- Delete p by replacing its content with the content of its symmetrical successor q.
 - Then delete q.
 - Deletion of q is easy because q has at most one child.

Illustration
- k has no internal child or one internal child:
 - a)
 - b) (left)
 - b) (right)
- k has two internal children:
 - c)
boolean delete(int c) {
 return delete(null, root, c);
}

// delete c from the tree rooted in n, whose parent is vn
boolean delete(SearchNode vn, SearchNode n, int c) {
 if (n == null) return false;
 if (c < n.content) return delete(n, n.left, c);
 if (c > n.content) return delete(n, n.right, c);
 // now we have: c == n.content
 if (n.left == null) {
 point(vn, n, n.right);
 return true;
 }
 if (n.right == null) {
 point(vn, n, n.left);
 return true;
 }
 // ...

// now n.left != null and n.right != null
SearchNode q = pSymSucc(n);
if (n == q) { // right child of q is pSymSucc(n)
 n.content = q.right.content;
 q.right = q.right.right;
 return true;
}
else { // left child of q is pSymSucc(n)
 n.content = q.left.content;
 q.left = q.left.right;
 return true;
}

// boolean delete(SearchNode vn, SearchNode n, int c)

// let vn point to m instead of n;
// if vn == null, set root pointer to m
void point(SearchNode vn, SearchNode n, SearchNode m) {
 if (vn == null) root = m;
 else if (vn.left == n) vn.left = m;
 else vn.right = m;
}

// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {
 if (n.right.left != null) {
 n = n.right;
 while (n.left.left != null) n = n.left;
 }
 return n;
}