2 The Dictionary Problem: Search Trees

Summer Term 2011

Jan-Georg Smaus
The dictionary problem can be described as follows:

Given: a set of objects (data) where each element can be identified by a unique *key* (integer, string, ...).

Goal: a structure for storing the set of objects such that at least the following operations (methods) are supported:
- search (find, access)
- insert
- delete
The Dictionary Problem (2)

The following conditions can influence the choice of a solution to the dictionary problem:

- The place where the data are stored: main memory, hard drive, tape, WORM (write once read multiple)
- The frequency of the operations:
 - mostly insertion and deletion (dynamic)
 - mostly search (static)
 - approximately the same frequencies
 - not known
- Other operations to be implemented:
 - Enumerate the set in a certain order (e.g. ascending by key)
 - Set operations: union, intersection, difference, quantity, ...
 - Split
 - construct
- Measure for estimating the solution: average case, worst case, amortized worst case
- Order of executing the operations:
 - sequential
 - concurrent
Different approaches to the dictionary problem:

- Structuring the complete universe of all possible keys: hashing
- Structuring the set of the actually occurring keys: lists, trees, graphs, ...
Trees (1)

Trees are

- generalized lists
 (each list element can have more than one successor)
- special graphs:
 - in general, a graph $G = (V,E)$ consists of a set V of vertices and a set $E \subseteq V \times V$ of edges.
 - the edges are either directed or undirected.
 - vertices and edges can be labelled (they contain further information).

A tree is a connected acyclic graph, where:
vertices = # edges + 1

A general and central concept for the hierarchical structuring of information:
- decision trees
- code trees
- syntax trees
Several kinds of trees can be distinguished:

- **Undirected tree**: (with no designated root)

- **Rooted tree**: (one node [= vertex] is designated as the root)

 - From each node \(k \) there is exactly one path (a sequence of pairwise neighbouring edges) to the root

 - the **parent** (or: direct predecessor) of a node \(k \) is the first neighbour on the path from \(k \) to the root

 - the **children** (or: direct successors) are the other neighbours of \(k \)

 - the **rank** (or: outdegree) of a node \(k \) is the number of children of \(k \)
Trees (3)

- Rooted tree:
 - root: the only node that has no parent
 - leaf nodes (leaves): nodes that have no children
 - internal nodes: all nodes that are not leaves
 - order of a tree T: maximum rank of a node in T
 - The notion tree is often used as a synonym for rooted tree.

- Ordered (rooted) tree: the children of each node are somehow ordered, i.e., there is the “leftmost child”, the “second child from the left”, ..., the “rightmost child”.
 - In the graphical representation of a tree, this inevitably so.
 - In the formal definition of a tree, this is a-priori not the case. We have to explicitly state it.

- Binary tree: ordered tree of order 2; the children of a node (if there are 2) are referred to as left child and right child.

- Multiway tree: ordered tree of order > 2
A more precise definition of the set M_d of the ordered rooted trees of order $(d \geq 1)$:

Consider a set of nodes V.

- Each node in V is in M_d
- Let $t_1, \ldots, t_d \in M_d$ and w a node in V. Then w with the roots of t_1, \ldots, t_d as its children (from left to right) is a tree $t \in M_d$. The t_i are subtrees of t.

– According to this definition each node has rank d (or rank 0).

Nodes of binary trees either have 0 or 2 children.

– Variation of the definition: allowing for rank $\leq d$.

For binary trees, nodes with exactly 1 child could then also be permitted.
Illustration of the Definition
Examples

Note that we chose to depict inner nodes as circles and leaves as boxes.
Structural Properties of Trees

- **Depth of a node** k: # edges from the tree root until k (distance of k to the root)
- **Height** $h(t)$ of a tree t: maximum depth of a leaf in t.
 Alternative (recursive) definition:
 - $h(leaf) = 0$
 - $h(t) = 1 + \max\{t_i \mid$ root of t_i is a child of the root of $t\}$
 (t_i is a subtree of t)
- **Level** i: all nodes of depth i
- **Complete tree**: tree where each non-empty level has the maximum number of nodes.
 → all leaves have the same depth.
Labelled Vertices

- We mentioned that vertices (and edges) in a graph may be labelled, but in the above definitions on trees, we did not talk about labels yet – the set of nodes V was a “black box”.
- We now consider trees where either the inner nodes or the leaves or both are labelled.
Applications of Trees

Use of trees for the dictionary problem:
- **Node**: stores one data object
- **Tree**: stores a set of data
- Advantage (compared to hash tables): enumeration of the complete set of data (e.g. in ascending order) can be accomplished easily.
Standard Binary Search Trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)

Two alternative ways of storage:

- **Search trees**: keys are stored in internal nodes
 - leaf nodes are empty (usually = null), they represent intervals between the keys

- **Leaf search trees**: keys are stored in the leaves
 - internal nodes contain information in order to direct the search for a key

Search tree condition:

For each internal node k: all keys in the left subtree t_l of k are less (<) than the key in k and all keys in the right subtree t_r of k are greater (>) than the key in k
Leaves in the search tree represent intervals between keys of the internal nodes.

How can the search for key s be implemented? (leaf \equiv null)

```java
k = root;
while (k != null) {
    if (s == k.key) return true;
    if (s < k.key) k = k.left;
    else k = k.right
}
return false;
```
Example

Search for key \(s \) ends in the internal node \(k \) with \(k.key == s \)

or in the leaf whose interval contains \(s \)
Standard Binary Search Trees (3)

Leaf search tree:

- Keys are stored in leaf nodes
- Clues (routers) are stored in internal nodes, such that \(s_l \leq s_k < s_r \) (\(s_l \) : key in left subtree, \(s_k \) : router in \(k \), \(s_r \) : key in right subtree)
- Choice of \(s \): maximum key in \(t_i \).
- Alternative convention (less common): require \(s_l < s_k \leq s_r \) and choose \(s \) as minimum key in \(t_r \).
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
How is the search for key s implemented in a leaf search tree?
(leaf = node with 2 $null$ pointers)

```java
k = root;
if (k == null) return false;
while (k.left != null) { // thus also k.right != null
    if (s <= k.key) k = k.left;
    else k = k.right;
} // now in the leaf
return s==k.key;
```
From now on ...

- In the following we always talk about search trees (not leaf search trees).
```java
class SearchNode {
    int content;
    SearchNode left;
    SearchNode right;
    SearchNode (int c){ // Constructor for a node
        content = c; // without successor
        left = right = null;
    }
}

class SearchTree {
    SearchNode root;
    SearchTree () { // Constructor for empty tree
        root = null;
    }
    // ...
}
```
/* Search for c in the tree */
boolean search (int c) {
 return search (root, c);
}

boolean search (SearchNode n, int c) {
 while (n != null) {
 if (c == n.content) return true;
 if (c < n.content) n = n.left;
 else n = n.right;
 }
 return false;
}
Insertion of a node with key s in search tree t:

- Search for s ends in a node with s: don’t insert (otherwise, there would be duplicated keys)
- Search ends in leaf b: make b an internal node with s as its key and two new leaves.

Tree remains a search tree!
Tree structure depends on the order of insertions into the initially empty tree

Height can increase linearly, but it can also be in $O(\log n)$, more precisely $\lceil \log_2 (n+1) \rceil$.
int height() {
 return height(root);
}

int height(SearchNode n) {
 if (n == null) return 0;
 else return 1 + Math.max(height(n.left),
 height(n.right));
}

/* Insert c into tree; return true if successful
 and false if c was in tree already */
boolean insert (int c) { // insert c
 if (root == null) {
 root = new SearchNode (c);
 return true;
 } else return insert (root, c);
}
boolean insert (SearchNode n, int c){
 while (true){
 if (c == n.content) return false;
 if (c < n.content){
 if (n.left == null) {
 n.left = new SearchNode (c);
 return true;
 } else n = n.left;
 } else { // c > n.content
 if (n.right == null) {
 n.right = new SearchNode (c);
 return true;
 } else n = n.right;
 }
 }
}
Special cases

- The structure of the resulting tree depends on the order in which the keys are inserted. The minimal height is $\lceil \log_2 (n+1) \rceil$ and the maximal height is n.
- Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and 1, 3, 14, 15, 27, 39:
A standard tree is created by iterative insertions in an initially empty tree.

- Which trees are more frequent/typical: the balanced or the degenerate ones?
- How costly is an insertion?

We will address these questions in the next chapter.
Deletion of a node with key s from a tree (while retaining the search tree property)

Search for s.
If search fails: done.
Otherwise search ends in node k with $k.key == s$ and

- k has no child, one child or two children:
 - (a) no child: done (set the parent’s pointer to null instead of k)
 - (b) only one child: let k’s parent v point to k’s child instead of k
 - (c) two children: search for the smallest key in k’s right subtree, i.e. go right and then to the left as far as possible until you reach p (the symmetrical successor of k); copy $p.key$ to k, delete p (which has at most one child, so follow step (a) or (b))
Symmetrical successor

Definition: A node q is called the **symmetrical successor** of a node p if q contains the smallest key greater than or equal to the key of p.

Observations:
- The symmetrical successor q of p is the leftmost node in the right subtree of p.
- The symmetrical successor has at most one child, which is the right child.
Finding the symmetrical successor

Observation: If p has a right child, the symmetrical successor always exists.

- First go to the right child of p.
- From there, always proceed to the left child until you find a node without a left child.
Idea of the *delete* operation

- Delete p by replacing its content with the content of its symmetrical successor q. Then delete q.
- Deletion of q is easy because q has at most one child.
k has no internal child or one internal child:

a) $\quad \quad \ Quad
Illustration (2)

k has two internal children:

\begin{center}
\begin{tikzpicture}
 \node (s) at (0,0) {s};
 \node (t_l) at (-1,-1) {t_l};
 \node (t_r) at (1,-1) {t_r};
 \node (p) at (0,-2) {p};
 \node (v) at (0,1) {v};
 \node (k) at (0,-1) {k};
 \draw (s) -- (t_l);
 \draw (s) -- (t_r);
 \draw (s) -- (p);
 \draw (v) -- (s);
 \draw (k) -- (s);
\end{tikzpicture}
\end{center}
boolean delete(int c) {
 return delete(null, root, c);
}
// delete c from the tree rooted in n, whose parent is vn
boolean delete(SearchNode vn, SearchNode n, int c) {
 if (n == null) return false;
 if (c < n.content) return delete(n, n.left, c);
 if (c > n.content) return delete(n, n.right, c);
 // now we have: c == n.content
 if (n.left == null) {
 point (vn, n, n.right);
 return true;
 }
 if (n.right == null) {
 point (vn, n, n.left);
 return true;
 }
 // ...
// now n.left != null and n.right != null
SearchNode q = pSymSucc(n);
if (n == q) { // right child of q is pSymSucc(n)
 n.content = q.right.content;
 q.right = q.right.right;
 return true;
} else { // left child of q is pSymSucc(n)
 n.content = q.left.content;
 q.left = q.left.right;
 return true;
}
} // boolean delete(SearchNode vn, SearchNode n, int c)
// let vn point to m instead of n;
// if vn == null, set root pointer to m
void point(SearchNode vn, SearchNode n, SearchNode m) {
 if (vn == null) root = m;
 else if (vn.left == n) vn.left = m;
 else vn.right = m;
}
// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {
 if (n.right.left != null) {
 n = n.right;
 while (n.left.left != null) n = n.left;
 }
 return n;
}