Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).
L_2 is decidable.

Theorem

Corollary

Undecidability

$r \circ s, r \sqcap s, \neg r, 1$ [Schild 88]

not relevant; Tarski had shown that already! – for relation algebras

$r \circ s, r = s, C \sqcap D, \forall r.C$ [Schmidt-Schauß 89]

This is in fact a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.
Decidable, Polynomial-Time Cases

- FL^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$
\begin{align*}
C &\rightarrow A | \neg A | C \sqcap C' | \forall r.C | (\geq n r) | (\leq n r), \ r \rightarrow t | r^{-1} \\
C &\rightarrow A | C \sqcap C' | \forall r.C | \exists r, \ r \rightarrow t | r^{-1} | r \sqcap r' | r \circ r' \\
\text{Open:} &
\end{align*}
$$

How Hard Does It Get?

- Is \mathcal{ALC} unsatisfiability and subsumption also complete for co-NP?
- Unlikely – since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisfiability in the modal logic K
- Satisfiability and unsatisfiability in K is PSPACE-complete

Complexity of \mathcal{ALC} Subsumption

Reduction from K-Satisfiability

Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

$$
\begin{align*}
\Box \psi &\rightarrow \forall b. \pi(\psi) \\
\Diamond \psi &\rightarrow \exists b. \pi(\psi)
\end{align*}
$$

Again, obviously, ψ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi(a)$ if a_i is true in w. For the converse direction use the interpretation the other way around.
Computational Complexity of \mathcal{ALC} Subsumption

Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Further Consequences of the Reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
- The multi-modal logic $K(n)$ has n different Box operators \Box_i (for n different agents)
- \mathcal{ALC} is a notational variant of $K(n)$ [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
- propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
- Algorithms and complexity results can be borrowed. Works also the other way around

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}
- Does it make sense to use a language such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 1. Use only small description logics with complete inference algorithms
 2. Use expressive description logics, but employ incomplete inference algorithms
 3. Use expressive description logics with complete inference algorithms
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to an exponential blowup:

$$
\begin{align*}
C_1 & \doteq \forall r. C_0 \sqcap \forall s. C_0 \\
C_2 & \doteq \forall r. C_1 \sqcap \forall s. C_1 \\
& \vdots \\
C_n & \doteq \forall r. C_{n-1} \sqcap \forall s. C_{n-1}
\end{align*}
$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$
- Is it possible to avoid this blowup?
- Can we avoid exponential preprocessing?
The Complexity of Subsumption in TBoxes

TBox Subsumption for Small Languages

- **Question**: Can we decide in polynomial time *TBox subsumption* for a description logic such as $\mathcal{FL^-}$, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0: $C \sqcap D, \forall r.C$ with *terminological axioms*.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + structural subsumption gives us an *exponential* algorithm.

The Complexity of Subsumption in TBoxes

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the *NDFA-equivalence problem*, which is NP-complete for cycle-free automata and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0-terminology with the mapping π as follows:

- automaton $A \mapsto$ terminology T_A
- state $q \mapsto$ concept name q
- terminal state $q_f \mapsto$ concept name q_f
- input symbol $r \mapsto$ role name r

r-transitions from q to $q' \mapsto q = \ldots \sqcap \forall r : q' \sqcap \ldots$

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_T q$, from which the correctness of the reduction and the complexity result follows.

What Does This Complexity Result Mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role *in practice*
- **Pathological situations** do not happen very often
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses *lazy unfolding*
- Similarly, also for the \mathcal{ALC} concept descriptions, one notices that they are usually very well behaved.
Outlook

- Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE)
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Literature