Principles of Knowledge Representation and Reasoning
Description Logics – Algorithms

Bernhard Nebel, Stefan Wölfl, and Marco Ragni
Albert-Ludwigs-Universität Freiburg

July 14, 2010
Description Logics – Algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method
Reasoning Problems & Algorithms

- **Satisfiability** or **subsumption** of concept descriptions
- **Satisfiability** or **instance relation** in ABoxes
- **Structural subsumption algorithms**
 - *Normalization* of concept descriptions and **structural comparison**
 - very fast, but can only be used for small DLs
- **Tableau algorithms**
 - Similar to modal tableau methods
 - Meanwhile the method of choice
Structural Subsumption Algorithms

- **Small Logic \(\mathcal{FL}^- \)**
 - \(C \sqcap D \)
 - \(\forall r.C \)
 - \(\exists r \) (simple existential quantification)

- **Idea**
 1. In the conjunction, collect all *universally quantified expressions* (also called *value restrictions*) with the same role and build *complex value restriction*:
 \[
 \forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).
 \]
 2. Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a *corresponding one* in the subsumed one.
Example

\(D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child}.\text{Human} \sqcap \)
\(\forall \text{has-child}.\exists \text{has-child} \)
\(C = \text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child} \sqcap \)
\(\forall \text{has-child}.(\text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child}) \)

Check: \(C \subseteq D \)

1. **Collect** value restrictions in \(D \): ...\(\forall \text{has-child}.(\text{Human} \sqcap \exists \text{has-child}) \)
2. **Compare**:
 2.1 For Human in \(D \), we have Human in \(C \)
 2.2 For \(\exists \text{has-child} \) in \(D \), we have ...
 2.3 For \(\forall \text{has-child}.(...) \) in \(D \), we have ...
 2.3.1 For Human ...
 2.3.2 For \(\exists \text{has-child} \) ...

\(\leadsto \) \(C \) is subsumed by \(D \)!
Subsumption Algorithm

SUB(C, D) algorithm:

1. Reorder terms (**commutativity**, **associativity** and **value restriction law**):

 \[
 C = \bigcap A_i \cap \bigcap \exists r_j \cap \bigcap \forall r_k : C_k \\
 D = \bigcap B_l \cap \bigcap \exists s_m \cap \bigcap \forall s_n : D_n
 \]

2. For each \(B_l \) in \(D \), is there an \(A_i \) in \(C \) with \(A_i = B_l \)?
3. For each \(\exists s_m \) in \(D \), is there an \(\exists r_j \) in \(C \) with \(s_m = r_j \)?
4. For each \(\forall s_n : D_n \) in \(D \), is there a \(\forall r_k : C_k \) in \(C \) such that \(C_k \sqsubseteq D_n \) and \(s_n = r_k \)?

\[\sim C \sqsubseteq D \text{ iff all questions are answered positively}\]
Soundness

Theorem (Soundness)

\[\text{SUB}(C, D) \Rightarrow C \subseteq D \]

Proof sketch.

Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show: \((\forall r. (C \cap D))^I = (\forall r.C \cap \forall r.D)^I \)

Assumption: \(d \in (\forall r. (C \cap D))^I \)

Case 1: \(\forall e: (d, e) \in r^I \) \(\surd \)

Case 2: \(\exists e: (d, e) \in r^I \Rightarrow e \in (C \cap D)^I \Rightarrow e \in C^I, e \in D^I \)

Since \(e \) is arbitrary: \(d \in (\forall r. C)^I, d \in (\forall r. D)^I \) then \(d \) must also be conjunction, i.e., \((\forall r. (C \cap D))^I \subseteq (\forall r.C \cap \forall r.D)^I \)

Other direction is similar

(2+3+4): Induction on the nesting depth of \(\forall \)-expressions
Completeness

Theorem (Completeness)
\(C \sqsubseteq D \Rightarrow SUB(C, D) \)

Proof idea.
One shows the contrapositive:

\[\neg SUB(C, D) \Rightarrow C \not\sqsubseteq D \]

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element \(d \) such that

\[d \in C^I, \text{ but } d \notin D^I \]
Generalizing the Algorithm

Extensions of \mathcal{FL}^- by

- $\neg A$ (*atomic negation*),
- $(\leq n r), (\geq n r)$ (*cardinality restrictions*),
- $r \circ s$ (*role composition*)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).
ABox Reasoning

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm
Tableau Method

▶ Logic \mathcal{ALC}
 - $C \sqcap D$
 - $C \sqcup D$
 - $\neg C$
 - $\forall r.C$
 - $\exists r.C$

▶ Idea: Decide (un-)satisfiability of a concept description C by trying to \textit{systematically construct} a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.
Example: Subsumption in a TBox

TBox

Hermaphrodite \equiv Male \sqcap Female

Parents-of-sons-and-daughters \equiv \exists has-child.Male \sqcap \exists has-child.Female

Parents-of-hermaphrodite \equiv \exists has-child.Hermaphrodite

Query

Parents-of-sons-and-daughters \sqsubseteq_T Parents-of-hermaphrodites
Reductions

1. **Unfolding**
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqsubseteq \exists \text{has-child}. (\text{Male} \sqcap \text{Female}) \]

2. **Reduction to unsatisfiability**
 Is
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \neg (\exists \text{has-child}. (\text{Male} \sqcap \text{Female})) \]
 unsatisfiable?

3. **Negation normal form** (move negations inside):
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]

4. **Try to construct a model**
Model Construction (1)

1. **Assumption**: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^\mathcal{I}$$

2. This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \text{has-child}.\text{Male})^\mathcal{I}$$
$$x \in (\exists \text{has-child}.\text{Female})^\mathcal{I}$$
$$x \in (\forall \text{has-child}.(\neg \text{Male} \sqcup \neg \text{Female}))^\mathcal{I}$$

3. This implies that there should be objects y and z such that

$$(x, y) \in \text{has-child}^\mathcal{I}, (x, z) \in \text{has-child}^\mathcal{I}, y \in \text{Male}^\mathcal{I} \text{ and } z \in \text{Female}^\mathcal{I} \text{ and ...}$$
Model Construction (2)

\[x: \exists \text{has-child}.\text{Male} \]
\[x: \exists \text{has-child}.\text{Female} \]

```
has-child
  y
  Male
```

```
has-child
  z
  Female
```
Model Construction (3)

\[x : \exists \text{has-child}.\text{Male} \]
\[x : \exists \text{has-child}.\text{Female} \]
\[x : \forall \text{has-child}.(\neg \text{Male} \sqcup \neg \text{Female}) \]
Model Construction (4)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Male} \]

Diagram:

```
x
  has-child    has-child
  \downarrow   \downarrow
  y             z
  Male          Female
  \neg Male or \neg Female \neg Male or \neg Female
  \neg Male \rightarrow \text{Contradiction}
```
Model Construction (5)

\[x : \exists \text{has-child}.\text{Male} \]
\[x : \exists \text{has-child}.\text{Female} \]
\[x : \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Female} \]
\[z : \neg \text{Male} \]

\[\neg \text{Male or } \neg \text{Female} \]
\[\neg \text{Female or } \neg \text{Male} \]

\[\Rightarrow \text{Model constructed!} \]
Tableau Method (1): NNF

$C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

\[
\neg(C \cap D) \equiv \neg C \cup \neg D \\
\neg(C \cup D) \equiv \neg C \cap \neg D \\
\neg\neg C \equiv C \\
\neg(\forall r. C) \equiv \exists r. \neg C \\
\neg(\exists r. C) \equiv \forall r. \neg C
\]

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF)

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.
Tableau Method (2): Constraint Systems

A constraint is a syntactical object of the form: \(\mathbf{x}: \mathbf{C} \) or \(\mathbf{xry} \), where \(\mathbf{C} \) is a concept description in NNF, \(r \) is a role name and \(\mathbf{x} \) and \(\mathbf{y} \) are variable names.

Let \(\mathcal{I} \) be an interpretation. An \(\mathcal{I} \)-assignment \(\alpha \) is a function that maps each variable symbol to an object of the universe \(\mathcal{D} \).

A constraint \(\mathbf{x}: \mathbf{C} (\mathbf{xry}) \) is satisfied by an \(\mathcal{I} \)-assignment \(\alpha \), if \(\alpha(\mathbf{x}) \in C^\mathcal{I} (\langle \alpha(\mathbf{x}), \alpha(\mathbf{y}) \rangle \in r^\mathcal{I}) \).

A constraint system \(S \) is a finite, non-empty set of constraints. An \(\mathcal{I} \)-assignment \(\alpha \) satisfies \(S \) if \(\alpha \) satisfies each constraint in \(S \). \(S \) is satisfiable if there exists \(\mathcal{I} \) and \(\alpha \) such that \(\alpha \) satisfies \(S \).

Theorem

An \(\mathcal{ALC} \) concept \(\mathbf{C} \) in NNF is satisfiable iff the system \(\{ \mathbf{x}: \mathbf{C} \} \) is satisfiable.
Tableau Method (3): Transforming Constraint Systems

Transformation rules:

1. $S \to \sqcap \{x: C_1, x: C_2\} \cup S$
 if $(x: C_1 \cap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in S.

2. $S \to \sqcup \{x: D\} \cup S$
 if $(x: C_1 \cup C_2) \in S$ and neither $(x: C_1) \in S$ nor $(x: C_2) \in S$ and
 $D = C_1$ or $D = C_2$.

3. $S \to \exists \{xry, y: C\} \cup S$
 if $(x: \exists r. C) \in S$, y is a fresh variable, and there is no z s.t.
 $(xrz) \in S$ and $(z: C) \in S$.

4. $S \to \forall \{y: C\} \cup S$
 if $(x: \forall r. C), (xry) \in S$ and $(y: C) \notin S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).
Tableau Method (4): Invariances

Theorem (Invariance)

Let S and T be constraint systems:

1. If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.

2. If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x : C\}$.
Tableau Method (5): Soundness and Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x: A$ and $x: \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A *closed constraint system is satisfiable iff it does not contain a clash.*

Proof idea.

\Rightarrow: obvious. \Leftarrow: Construct a model by using the concept labels.
Space Requirements

Because the tableau method is *non-deterministic* ($\rightarrow \sqcap$ rule) ... there could be exponentially many closed constraint systems in the end. Interestingly, even one constraint system can have *exponential size*.

Example:

$$\exists r. A \sqcap \exists r. B \sqcap$$

$$\forall r. \left(\exists r. A \sqcap \exists r. B \sqcap$$

$$\forall r. (\exists r. A \sqcap \exists r. B \sqcap$$

$$\forall r. (\ldots)) \right)$$

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a y only for one $\exists r. C$ and then proceeding into the depth.
ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- **Normalize** and **unfold** and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in \mathcal{ALC} we do not need this because we are never forced to identify two objects.

