Principles of Knowledge Representation and Reasoning

Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Stefan Wölfl, and Marco Ragni

Albert-Ludwigs-Universität Freiburg

July 12, 2010
1 Motivation

2 Basic Reasoning Services

3 Eliminating the TBox

4 General TBox Reasoning Services

5 General ABox Reasoning Services

6 Summary and Outlook
Example TBox & ABox

Male ⊑ ¬Female
Human ⊑ Living_entity
Woman ⊑ Human ⊓ Female
Man ⊑ Human ⊓ Male
Mother ⊑ Woman ⊓ ∃has-child.Human
Father ⊑ Man ⊓ ∃has-child.Human
Parent ⊑ Father ⊓ Mother
Grandmother
 ⊑ Woman ⊓ ∃has-child.Parent
Mother-without-daughter
 ⊑ Mother ⊓ ∀has-child.Male
Mother-with-many-children
 ⊑ Mother ⊓ (∨ 3 has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man

DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child
Motivation: Reasoning Services

- **What do we want to know?**
 - We want to check whether the *knowledge base* is reasonable
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
 - What can we **conclude** from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object *a* instance of a concept X?

- These problems can be **reduced** to logical satisfiability or implication – using the logical semantics.

- We take a different route: We will try to simplify these problems and then we specify *direct inference methods*.
Motivation: Reasoning Services

- What do we want to know?
 - We want to check whether the *knowledge base* is reasonable
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we **conclude** from the represented knowledge?
 - Is concept X **subsumed** by concept Y?
 - Is an object *a instance* of a concept X?

- These problems can be **reduced** to logical satisfiability or implication – using the logical semantics.

- We take a different route: We will try to simplify these problems and then we specify *direct inference methods*.
Motivation: Reasoning Services

What do we want to know?

We want to check whether the *knowledge base* is reasonable
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we *conclude* from the represented knowledge?
- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be *reduced* to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify *direct inference methods*.
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?
- **Test**:
 - Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
 - Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?
- **Example**: Mother-without-daughter \sqcap \forall has-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions in a TBox

Motivation: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist a *model* \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?

Example: *Mother-without-daughter \sqcap Female* is unsatisfiable.
Satisfiability of Concept Descriptions (without a TBox)

Motivation: Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Is the formula $\exists x : C(x)$ satisfiable?

Example: Woman $\sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of Concept Descriptions (without a TBox)

- **Motivation:** Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

- **Test:**
 - Does there exist an interpretation I such that $C^I \neq \emptyset$?
 - Is the formula $\exists x : C(x)$ satisfiable?

- **Example:** Woman $\sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Reduction: Getting Rid of the TBox

- We can reduce satisfiability in a TBox to simple satisfiability.

 Idea:
 - Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
 - For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be *expanded* until C contains only undefined concept symbols
 - An *expanded* concept description is then satisfiable iff C is satisfiable in \mathcal{T}
 - **Problem:** What do we do with partial definitions (using \sqsubseteq)?

Reduction: Getting Rid of the TBox

We can reduce satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be *expanded* until C contains only undefined concept symbols
- An *expanded* concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem:** What do we do with partial definitions (using \sqsubseteq)?
A terminology is called normalized when it does not contain definitions using \sqsubseteq.

In order to normalize a terminology, replace

$$A \sqsubseteq C$$

by

$$A \equiv A^* \cap C,$$

where A^* is a fresh concept symbol (not appearing elsewhere in \mathcal{T}).

If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.

Normalized Terminologies
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

“\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \subseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^{\mathcal{I}}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

“\Leftarrow”: Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

"\Rightarrow": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \subseteq C') \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C') \in \tilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

"\Leftarrow": Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \(\mathcal{I} \) *is a model of the terminology* \(\mathcal{T} \), *then there exists a model* \(\mathcal{I}' \) *of* \(\tilde{\mathcal{T}} \) *and vice versa* such that for all concept symbols* \(A \) *appearing in* \(\mathcal{T} \) *we have:*

\[
A^\mathcal{I} = A^{\mathcal{I}'}.
\]

Proof.

\(\Rightarrow \) : Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). This model should be extended to \(\mathcal{I}' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in \mathcal{T} \), i.e., we have \((A \sqsupseteq A^* \sqcap C) \in \tilde{\mathcal{T}} \). Then set \(A^{*\mathcal{I}'} = A^\mathcal{I} \). \(\mathcal{I}' \) obviously satisfies \(\tilde{\mathcal{T}} \) and has the same interpretation for all symbols in \(\mathcal{T} \).

\(\Leftarrow \) : Given a model \(\mathcal{I}' \) of \(\tilde{\mathcal{T}} \), its restriction to symbols of \(\mathcal{T} \) is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} *is a model of the terminology* \mathcal{T}, *then there exists a model* \mathcal{I}' *of* $\tilde{\mathcal{T}}$ *(and vice versa) such that for all concept symbols* A *appearing in* \mathcal{T} *we have:*

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

"\Rightarrow": Let \mathcal{I} be a model of \mathcal{T}. This model should be *extended* to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \vDash A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

"\Leftarrow": Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If I is a model of the terminology \mathcal{T}, then there exists a model I' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^I = A^{I'}.$$

Proof.

“\Rightarrow”: Let I be a model of \mathcal{T}. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \sqsubseteq A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{*I'} = A^I$. I' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

“\Leftarrow” Given a model I' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
We say that a *normalized TBox* is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother \equiv Woman $\sqcap \ldots$ is unfolded to Mother \equiv (Human \sqcap Female) $\sqcap \ldots$

We write $U(\mathcal{T})$ to denote a one-step unfolding and $U^n(\mathcal{T})$ to denote an *n-step unfolding*.

We say \mathcal{T} is **unfolded** if $U(\mathcal{T}) = \mathcal{T}$.

We say that $U^n(\mathcal{T})$ is the **unfolding** of \mathcal{T} if $U^n(\mathcal{T}) = U^{n+1}(\mathcal{T})$. If such an unfolding exists, it is denoted by $\hat{\mathcal{T}}$.

Motivation

Basic Reasoning Services

Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

KRR

Nebel, Wölf, Ragni
We say that a *normalized TBox* is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother ≡ Woman ⊓ ... is unfolded to Mother ≡ (Human ⊓ Female) ⊓ ...

We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.

We say T is unfolded if $U(T) = T$.

We say that $U^n(T)$ is the *unfolding* of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \(\mathcal{T} \), there exists its unfolding \(\hat{\mathcal{T}} \).

Proof idea.

The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

\(\Rightarrow \) : Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

\(\Leftarrow \) : Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[I \text{ is a model of a normalized terminology } \mathcal{T} \iff \text{ it is a model of } \hat{\mathcal{T}}. \]

Proof Sketch.

"⇒": Let \(I \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

"⇐": Let \(I \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(T \) iff it is a model of \(\hat{T} \).

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(T \). Then it is also a model of \(U(T) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{T} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(T) \). Clearly, this is also a model of \(T \) (with the same argument as above). This means that any model \(\hat{T} \) is also a model of \(T \).
Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof Sketch.

$⇒$: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

$⇐$: Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ iff it is a model of } \hat{\mathcal{T}}. \]

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Generating Models

- All concept and role names not appearing on the left hand side in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.

We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} iff \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}. This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C.

\[\square \]
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

“\Rightarrow”: trivial.

“\Leftarrow”: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C.\qed
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C. □
Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.

We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C. □
Motivation: Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq \mathcal{T} D$)?

Test:

- Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

Example: Grandmother $\sqsubseteq \mathcal{T}$ Mother
Motivation: Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_\mathcal{T} D$)?

Test:
- Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

Example: Grandmother $\sqsubseteq_\mathcal{T}$ Mother
Subsumption (Without a TBox)

Motivation: Given two concept descriptions C and D, is C *subsumed by* D regardless of a TBox (or in an *empty TBox*), written $C \sqsubseteq D$?

Test:
- Is C interpreted as a subset of D for *all interpretations* \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ *logically valid*?

Example: Human \sqcap Female \sqsubseteq Human
Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

Test:

- Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

Example: Human \sqcap Female \sqsubseteq Human
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
 - Normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 - $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable
- Unsatisfiability can be reduced to subsumption
 - C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C)$
Subsumption in a TBox can be reduced to subsumption in the empty TBox

Normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability

\[C \sqsubseteq D \text{ iff } C \cap \neg D \text{ is unsatisfiable} \]

Unsatisfiability can be reduced to subsumption

\[C \text{ is unsatisfiable iff } C \sqsubseteq (C \cap \neg C) \]
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- Normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 - \(C \subseteq D \) iff \(C \cap \neg D \) is unsatisfiable
 - Unsatisfiability can be reduced to subsumption
 - \(C \) is unsatisfiable iff \(C \subseteq (C \cap \neg C) \)
Subsumption in a TBox can be reduced to subsumption in the empty TBox

- **Normalize** and **unfold** TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability

- \(C \sqsubseteq D \) iff \(C \cap \neg D \) is unsatisfiable

Unsatisfiability can be reduced to subsumption

- \(C \) is unsatisfiable iff \(C \sqsubseteq (C \cap \neg C) \)
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- *Normalize* and *unfold* TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability

 \[C \subseteq D \text{ iff } C \sqcap \neg D \text{ is unsatisfiable} \]

- Unsatisfiability can be reduced to subsumption

 \[C \text{ is unsatisfiable iff } C \subseteq (C \sqcap \neg C) \]
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- *Normalize* and *unfold* TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 - \(C \sqsubseteq D \) iff \(C \sqcap \neg D \) is unsatisfiable
- Unsatisfiability can be reduced to subsumption
 - \(C \) is unsatisfiable iff \(C \sqsubseteq (C \sqcap \neg C) \)
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

○ check the modeling – does the terminology make sense?
○ use the precomputed relations later when subsumption queries have to be answered
○ reduce to subsumption
○ it is a generalized sorting problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a generalized sorting problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a generalized sorting problem!
Motivation: An ABox should *model* the real world, i.e., it should have a *model*.

Test: Check for a model

Example:

\[X : (\forall r. \neg C) \]
\[Y : C \]
\[(X, Y) : r \]

is not satisfiable.
Motivation: An ABox should *model* the real world, i.e., it should have a *model*.

Test: Check for a model

Example:

\[X : (\forall r. \neg C) \]
\[Y : C \]
\[(X, Y) : r \]

is not satisfiable.
Motivation: An ABox should model the real world, i.e., it should have a model.

Test: Check for a model

Example:

\[
\begin{align*}
X & : (\forall r. \neg C) \\
Y & : C \\
(X, Y) & : r
\end{align*}
\]

is not satisfiable.
Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example: If we extend our example with

\[
\text{MARGRET: Woman (DIANA, MARGRET): has-child,}
\]

then the ABox becomes unsatisfiable in the given TBox.

Reduction:

- to satisfiability of an ABox
- *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example**: If we extend our example with MARGRET: Woman
 (DIANA,MARGRET): has-child,
then the ABox becomes unsatisfiable in the given TBox.
- **Reduction**:
 - to satisfiability of an ABox
 - *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example: If we extend our example with
- MARGRET: Woman
- (DIANA, MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Reduction:
- to satisfiability of an ABox
- *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example**: If we extend our example with
 MARGRET: Woman
 (DIANA,MARGRET): has-child,
then the ABox becomes unsatisfiable in the given TBox.
- **Reduction**:
 - to satisfiability of an ABox
 - *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example**: If we extend our example with
 MARGRET: Woman
 (DIANA,MARGRET): has-child,

 then the ABox becomes unsatisfiable in the given TBox.
- **Reduction**:
 - to satisfiability of an ABox
 - *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
Motivation: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

Test:
- Is $a^I \in C^I$ true in all models of I of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use *normalization* and *unfolding*
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $$a : C \text{ holds in } \mathcal{A} \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Instance Relations

Motivation: Which additional ABox formulas of the form \(a: C \) follow logically from a given ABox and TBox?

Test:
- Is \(a^I \in C^I \) true in all models of \(I \) of \(T \cup A \)?
- Does the formula \(C(a) \) logically follow from the translation of \(A \) and \(T \) to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 \[a: C \text{ holds in } A \text{ iff } A \cup \{a: \neg C\} \text{ is unsatisfiable} \]
Motivation: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

Test:
- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:
 $$a: C \text{ holds in } \mathcal{A} \text{ iff } \mathcal{A} \cup \{a: \neg C\} \text{ is unsatisfiable}$$
Motivation: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

Test:
- Is $a^I \in C^I$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $$a : C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Motivation: Which additional ABox formulas of the form \(a : C \) follow logically from a given ABox and TBox?

Test:
- Is \(a^I \in C^I \) true in all models of \(I \) of \(T \cup A \)?
- Does the formula \(C(a) \) logically follow from the translation of \(A \) and \(T \) to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

\[
a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable}
\]
Motivation: Which additional ABox formulas of the form \(a: C \) follow logically from a given ABox and TBox?

Test:
- Is \(a^\mathcal{I} \in C^\mathcal{I} \) true in all models of \(\mathcal{I} \) of \(T \cup A \)?
- Does the formula \(C(a) \) logically follow from the translation of \(A \) and \(T \) to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:
 \[
a: C \text{ holds in } A \iff A \cup \{a: \neg C\} \text{ is unsatisfiable}
\]
Examples

• ELIZABETH: Mother-with-many-children?

• WILLIAM: ­ Female?

• ELIZABETH: Mother-without-daughter?

• ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: \(\neg \) Female?
- ELIZABETH: Mother-without-daughter?
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: \neg Female?
- ELIZABETH: Mother-without-daughter?
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: \neg Female?
 - yes
- ELIZABETH: Mother-without-daughter?
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: ¬ Female?
 - yes
- ELIZABETH: Mother-without-daughter?
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: ¬ Female?
 - yes
- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: \(\neg \) Female?
 - yes
- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
- ELIZABETH: Grandmother?
Examples

- **ELIZABETH:** Mother-with-many-children?
 - **yes**

- **WILLIAM:** ¬ Female?
 - **yes**

- **ELIZABETH:** Mother-without-daughter?
 - **no** (no CWA!)

- **ELIZABETH:** Grandmother?
 - **no** (only male, but not necessarily human!)
Realization

- **Idea**: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.
Realization

- **Idea**: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.
Realization

Idea: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to *classification*
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Realization

- **Idea:** For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

- **Motivation:**
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction:** Can be reduced to (a sequence of) instance relation tests.
Idea: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries).

Example: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object.

Implementation: Realization can be used to speed this up.
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)
- **Example**: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.
- **Reduction**: Compute the set of instances by testing the instance relation for each object
- **Implementation**: Realization can be used to speed this up
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries)

Example: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object

Implementation: Realization can be used to speed this up
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries)

Example: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object

Implementation: Realization can be used to speed this up
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
 - Satisfiability of an ABox
 - in a given TBox or in an empty TBox
 - Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
 - Retrieval
Reasoning Services – Summary

- **Satisfiability of concept descriptions**
 - in a given TBox or in an empty TBox
- **Subsumption between concept descriptions**
 - in a given TBox or in an empty TBox
- **Classification**
- **Satisfiability of an ABox**
 - in a given TBox or in an empty TBox
- **Instance relations in an ABox**
 - in a given TBox or in an empty TBox
- **Realization**
- **Retrieval**
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?
How to determine *subsumption* between two concept description (in the empty TBox)?

How to determine *instance relations/ABox satisfiability*?

How to implement the mentioned reductions *efficiently*?

Does normalization and unfolding introduce another source of *computational complexity*?
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?