Principles of Knowledge Representation and Reasoning
Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Stefan Wölfl, and Marco Ragni

Albert-Ludwigs-Universität Freiburg

July 12, 2010
Semantic Networks and Description Logics III: Description Logics – Reasoning Services and Reductions

Motivation

Basic Reasoning Services

Eliminating the TBox

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook
Example TBox & ABox

\[
\begin{align*}
\text{Male} & \equiv \neg \text{Female} \\
\text{Human} & \sqsubseteq \text{Living_entity} \\
\text{Woman} & \equiv \text{Human} \sqcap \text{Female} \\
\text{Man} & \equiv \text{Human} \sqcap \text{Male} \\
\text{Mother} & \equiv \text{Woman} \sqcap \exists \text{has-child}.\text{Human} \\
\text{Father} & \equiv \text{Man} \sqcap \exists \text{has-child}.\text{Human} \\
\text{Parent} & \equiv \text{Father} \sqcup \text{Mother} \\
\text{Grandmother} & \equiv \text{Woman} \sqcap \exists \text{has-child}.\text{Parent} \\
\text{Mother-without-daughter} & \equiv \text{Mother} \sqcap \forall \text{has-child}.\text{Male} \\
\text{Mother-with-many-children} & \equiv \text{Mother} \sqcap (\geq 3 \text{has-child}) \\
\text{DIANA}: & \equiv \text{Woman} \\
\text{ELIZABETH}: & \equiv \text{Woman} \\
\text{CHARLES}: & \equiv \text{Man} \\
\text{EDWARD}: & \equiv \text{Man} \\
\text{ANDREW}: & \equiv \text{Man} \\
\text{DIANA}: & \equiv \text{Mother-without-daughter} \\
(\text{ELIZABETH}, & \text{CHARLES}): \equiv \text{has-child} \\
(\text{ELIZABETH}, & \text{EDWARD}): \equiv \text{has-child} \\
(\text{ELIZABETH}, & \text{ANDREW}): \equiv \text{has-child} \\
(\text{DIANA}, & \text{WILLIAM}): \equiv \text{has-child} \\
(\text{CHARLES}, & \text{WILLIAM}): \equiv \text{has-child}
\end{align*}
\]
Motivation: Reasoning Services

What do we want to know?

We want to check whether the knowledge base is reasonable
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?
- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?
- **Test**:
 - Does there exist a model I of \mathcal{T} such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?
- **Example**: Mother-without-daughter $\sqcap \forall$has-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions
(without a TBox)

- **Motivation:** Given a concept description C in “isolation”, i.e., in an *empty TBox*, does C make sense, i.e., is C satisfiable?

- **Test:**
 - Does there exist an *interpretation* I such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ satisfiable?

- **Example:** $\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
We can reduce satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox T and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols
- An expanded concept description is then satisfiable iff C is satisfiable in T
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
Normalized Terminologies

- A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.
- In order to **normalize** a terminology, replace
 \[A \sqsubseteq C \]
 by
 \[A \doteq A^* \sqcap C, \]
 where A^* is a **fresh** concept symbol (not appearing elsewhere in T).
- If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

"\Rightarrow": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^\ast \cap C) \in \tilde{\mathcal{T}}$. Then set $A^\ast \mathcal{I}' = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

"\Leftarrow": Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
TBox Unfolding

- We say that a *normalized TBox* is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
- **Example:** Mother $= \text{Woman} \sqcap \ldots$ is unfolded to Mother $= (\text{Human} \sqcap \text{Female}) \sqcap \ldots$
- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.
- We say T is unfolded if $U(T) = T$.
- We say that $U^n(T)$ is the unfolding of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof idea.
The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

\(\Rightarrow \): Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

\(\Leftarrow \): Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Generating Models

- All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model \mathcal{I} of T. This satisfies T as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \qed
Subsumption in a TBox

- **Motivation:** Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T}, $C \sqsubseteq_{\mathcal{T}} D$?

- **Test:**
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T}, $C^\mathcal{I} \subseteq D^\mathcal{I}$?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

- **Example:** Grandmother $\sqsubseteq_{\mathcal{T}}$ Mother
Subsumption (Without a TBox)

- **Motivation**: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?
- **Test**:
 - Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?
- **Example**: Human \sqcap Female \sqsubseteq Human
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox.
- **Normalize** and **unfold** TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability.
- $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.
- Unsatisfiability can be reduced to subsumption.
- C is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$.
Classification

Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!

Example
ABox Satisfiability

- **Motivation:** An ABox should *model* the real world, i.e., it should have a model.
- **Test:** Check for a model
- **Example:**

 \[
 X : (\forall r. \neg C) \\
 Y : C \\
 (X, Y) : r
 \]

 is not satisfiable.
ABox Satisfiability in a TBox

- **Motivation:** Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test:** Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example:** If we extend our example with

 MARGRET: Woman
 (DIANA,MARGRET): has-child,

 then the ABox becomes unsatisfiable in the given TBox.
- **Reduction:**
 - to satisfiability of an ABox
 - *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
 - Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use *normalization* and *unfolding*
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $$a: C \text{ holds in } \mathcal{A} \text{ iff } \mathcal{A} \cup \{a: \neg C\} \text{ is unsatisfiable}$$
Examples

▶ ELIZABETH: Mother-with-many-children?
▶ yes

▶ WILLIAM: ¬ Female?
▶ yes

▶ ELIZABETH: Mother-without-daughter?
▶ no (no CWA!)

▶ ELIZABETH: Grandmother?
▶ no (only male, but not necessarily human!)
Realization

- **Idea:** For a given object \(a \), determine the **most specialized concept symbols** such that \(a \) is an instance of these concepts

- **Motivation:**
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction:** Can be reduced to (a sequence of) instance relation tests.

Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)

- **Example**: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object

- **Implementation**: Realization can be used to speed this up
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?