Introduction

Motivation
Constraint Satisfaction Problems
Constraint Solving Methods
Qualitative Constraint Satisfaction Problems
Outlook

Literature

Quantitative vs. Qualitative

Spatio-temporal configurations can be described quantitatively by specifying the coordinates of the relevant objects:

Example: At time point 10.0 object A is at position (11.0, 1.0, 23.7). At time point 11.0 at position (15.2, 3.5, 23.7). From time point 0.0 to 11.0, object B is at position (15.2, 3.5, 23.7). Object C is at time point 11.0 at position (300.9, 25.6, 200.0) and at time point 35.0 at (11.0, 1.0, 23.7).

Often, however, a qualitative description (using a finite vocabulary) is more adequate:

Example: Object A hit object B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions, e.g.:

Object C was not close to object A when it hit object B.
Representation of Qualitative Knowledge

Intention: Description of configurations using a finite vocabulary and reasoning about these descriptions

- Specification of a **vocabulary:** usually a finite set of relations (often binary) that are pairwise disjoint and exhaustive
- Specification of a **language:** often sets of atomic formulae (constraint networks), perhaps restricted disjunction
- Specification of a formal **semantics**
- Analysis of computational properties and design of reasoning methods (often constraint propagation)
- Perhaps, specification of operational semantics for verifying whether a relation holds in a given quantitative configuration

Applications in...

- Natural language processing
- Specification of abstract spatio-temporal configurations
- Query languages for spatio-temporal information systems
- Layout descriptions of documents (and learning of such layouts)
- Action planning
- ...

Qualitative Temporal Relations: **Point Calculus**

We want to talk about **time instants** (points) and binary **relations** over them.

- **Vocabulary:**
 - X equals Y: $X = Y$
 - X before Y: $X < Y$
 - X after Y: $X > Y$

- **Language:**
 - Allow for disjunctions of basic relations to express indefinite information. Use set of relations to express that. For instance, $\{<, =\}$ expresses \leq.
 - 2^3 different relations (including the impossible and the universal relation)
 - Use **sets of atomic formulae** with these relations to describe configurations. For example:
 $$\{x = y, y < z\}$$

- **Semantics:** Interpret the time point symbols and relation symbols over the **rational** (or real) numbers.

Some Reasoning Problems

- **Satisfiability:** Are there values for all time points such that all formulae are satisfied?
- **Satisfiability** with $v = w$?
- Finding a satisfying instantiation of all time points
- **Deduction:** Does $x = y$ logically follow?
 Does $v < w$ follow?
- Finding a minimal description: What are the most constrained relations that describe the same set of instantiations?
From a Logical Point of View . . .

In general, qualitatively described configurations are simple logical theories:
- Only sets of atomic formulae to describe the configuration
- Only existentially quantified variables (or constants)
- A fixed background theory that describes the semantics of the relations (e.g., dense linear orders)
- We are interested in satisfiability, model finding, and deduction
- Constraint Satisfaction Problems

CSP – Definition

Definition
A constraint satisfaction problem (CSP) is given by
- a set \(V \) of \(n \) variables \(\{v_1, \ldots, v_n\} \),
- for each \(v_i \), a value domain \(D_i \)
- constraints (relations over subsets of the variables)

Tasks:
Find one (or all) solution(s), i.e., tuples
\[(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n\]
such that the assignment \(v_i \mapsto d_i \) (\(1 \leq i \leq n \)) satisfies all constraints.

CSP – Example

\(k \)-colorability: Can we color the nodes of a graph with \(k \) colors in a way such that all nodes connected by an edge have different colors?
- The node set is the set of variables
- The domain of each variable is \(\{1, \ldots, k\} \)
- The constraints are that nodes connected by an edge must have a different value

Note: This CSP has a particular restricted form:
- Only binary constraints
- The domains are finite

Other examples: Many problems (e.g. cross-word puzzle, \(n \)-queens problem, configuration, . . .) can be cast as a CSP (and solved this way)

Our Example: Point relations

- Our point relation CSP is a binary CSP with infinite domains.
- It can be represented as a constraint graph:
Computational Complexity

Theorem
It is NP-hard to decide solvability of CSPs, even binary CSPs.

Proof.
Since k-colorability is NP-complete (even for fixed $k \geq 3$), solvability of CSPs in general must be NP-hard.

Question: Is CSP solvability in NP?

Solving CSP

- Enumeration of all assignments and testing
 \Rightarrow . . . too costly
- Backtracking search
 \Rightarrow 1001 different strategies, often “dead” search paths are explored extensively
- Constraint propagation: elimination of obviously impossible values followed by backtracking search
- Many other search methods, e.g., local search, stochastic search, etc.
 \Rightarrow How do we solve CSP with infinite domains?

Local Consistency

- A CSP is locally consistent if for particular subsets of the variables, solutions of the restricted CSP can be extended to solutions of a larger set of variables.
 \Rightarrow Methods to transform a CSP into a tighter, but “equivalent” problem.

Definition
A binary CSP $\langle V, D, C \rangle$ is arc consistent (or 2-consistent) if for all nodes $1 \leq i, j \leq n$,

$\forall x \in D_i \Rightarrow \exists y \in D_j \text{ s.t. } (x, y) \in R_{ij}$

\Rightarrow When a CSP is arc consistent, each one variable assignment $\{v_i\} \rightarrow D$ that satisfies all (unary) constraints in v_i, i.e., D_i, can be extended to a two variable assignment $\{v_i, v_j\} \rightarrow D$ that satisfies all unary/binary constraints in these variables, i.e., D_i, D_j, and R_{ij}.
Arc Consistency

EnforceArcConsistency (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$

Output: an equivalent, but arc consistent CSP C'

repeat
 for each arc (v_i, v_j) with $R_{ij} \in C$
 $D_i := D_i \cap \{x \in D : \exists y \in D_j \text{ s.t. } (x, y) \in R_{ij}\}$
 endfor
until no domain is changed

Terminates in time $O(n^3 \cdot k^3)$ if we have finite domains (where k is the number of values)

There exist different (more efficient) algorithms for enforcing arc consistency.

Lemma

- Enforcing arc consistency yields an arc consistent CSP.
- Enforcing arc consistency is solution invariant, i.e. it does not change the set of solutions.

Arc consistent CSPs need not be consistent, and vice versa.

Arc Consistency – Example

$D_1 = \{1, 2, 3\}$
$D_2 = \{2, 3\}$
$D_3 = \{2\}$

$R_{ij} =$ "\#" for $i \neq j$

1. $D_1 := D_1 \cap \{x : y \in D_3 \land (x, y) \in R_{13}\} = \{1, 3\}$
2. $D_2 := D_2 \cap \{x : y \in D_3 \land (x, y) \in R_{23}\} = \{3\}$
3. $D_1 := D_1 \cap \{x : y \in D_2 \land (x, y) \in R_{12}\} = \{1\}$
4. CSP is now arc consistent

Since all unary constraints are singletons, this defines a solution of the CSP.

Since enforcing arc consistency does not change the set of solutions, this is a unique solution of the original CSP.

Local Consistency (2): Path Consistency

Definition

A binary CSP $\langle V, D, C \rangle$ is said to be path consistent (or 3-consistent) if for all nodes $1 \leq i, j, k \leq n$,

$x \in D_i, y \in D_j, (x, y) \in R_{ij} \Rightarrow \exists z \in D_k \text{ s.t. } (x, z) \in R_{ik} \text{ and } (y, z) \in R_{jk}$

When a CSP is path consistent, each two variable assignment $\{v_i, v_j\} \rightarrow D$ satisfying all constraints in v_i and v_j can be extended to any three variable assignment $\{v_i, v_j, v_k\} \rightarrow D$ such that all constraints in these variables are satisfied.
Path Consistency

EnforcePathConsistency (\mathcal{C}):
Input: a (binary) CSP $\mathcal{C} = \langle V, D, C \rangle$ of size n
Output: an equivalent, but path consistent CSP \mathcal{C}'

repeat
 for all $1 \leq i, j, k \leq n$
 $R_{ij} := R_{ij} \cap \{(x, y) : \exists z \in D_k \text{ s.t. } (x, z) \in R_{ik} \text{ and } (y, z) \in R_{jk}\}$
 endfor
until no binary constraint is changed

~ Terminates in time $O(n^5 \cdot k^5)$ if we have finite domains (where k is the number of values)
~ Enforcing path consistency is solution invariant.

Local Consistency (3):

k-Consistency and Strong k-Consistency

Definition
- A binary CSP $\langle V, D, C \rangle$ is k-consistent if, given variables x_1, \ldots, x_k and an assignment $a : \{x_1, \ldots, x_{k-1}\} \rightarrow D$ that satisfies all constraint in these variables, a can be extended to an assignment $a' : \{x_1, \ldots, x_k\} \rightarrow D$ that satisfies all constraints in these k variables.
- A binary CSP $\langle V, D, C \rangle$ is strongly k-consistent if it is k'-consistent for each $k' \leq k$.
- A binary CSP $\langle V, D, C \rangle$ is globally consistent if it is strongly n-consistent where n is the size of V.

Local Consistency (3):

- k-consistency: The computation costs grow exponentially with k.
- If a CSP is globally consistent, then
 - a solution can be constructed in polynomial time,
 - its constraints are minimal,
 - and it has a solution iff there is no empty constraint.
- k-consistent $\not\Rightarrow k - 1$-consistent

Qualitative Reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have
- infinite domains
- mostly only finitely many relations (basic relations and their unions)
- arc consistent CSPs (usually)

Questions:
- How do we achieve k-consistency (for some fixed k)?
- Is k-consistency (for some fixed k) enough to guarantee global consistency?
Introduction Qualitative CSP

Operations on Binary Relations

Composition:
\[R_1 \circ R_2 = \{(x, y) \in D^2 : \exists z \in D \text{ s.t. } (x, z) \in R_1 \text{ and } (z, y) \in R_2\} \]

Converse:
\[R^{-1} = \{(x, y) \in D^2 : (y, x) \in R\} \]

Intersection:
\[R_1 \cap R_2 = \{(x, y) \in D^2 : (x, y) \in R_1 \text{ and } (x, y) \in R_2\} \]

Union:
\[R_1 \cup R_2 = \{(x, y) \in D^2 : (x, y) \in R_1 \text{ or } (x, y) \in R_2\} \]

Complement:
\[\overline{R} = \{(x, y) \in D^2 : (x, y) \not\in R\} \]

Conditions on Vocabulary for Qualitative Reasoning

- Let \(B \) be a finite set of (binary) base relations.
 - The relations in \(B \) should be JEPD, i.e., jointly exhaustive and pairwise disjoint.
- \(B \) should be closed under converse.
- Let \(A \) be the set of relations that can be built by taking the unions of relations from \(B \) (\(\rightarrow 2^{|B|} \) different relations).
 - \(A \) is closed under converse, complement, intersection and union.
- \(A \) should be closed under composition of base relations, i.e., for all \(B, B' \in B \), \(B \circ B' \in A \).
 - This condition does not hold necessarily.
 - Example: \(B = \{<, =, >\} \) interpreted over the integers is not closed under composition (and has no finite closure):
 \[< \circ < = < \setminus \{(i, j) : i = j - 1\} \subset < \]

Computing Operations on Relations

Let \(A \) be a relation system over the set of base relations \(B \) that satisfies the conditions spelled out above.

- We may write relations as sets of base relations:
 \[B_1 \cup \cdots \cup B_n \sim \{B_1, \ldots, B_n\} \]

Then the operations on the relations can be computed as follows:

Composition:
\[\{B_1, \ldots B_n\} \circ \{B'_1, \ldots, B'_m\} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (B_i \circ B'_j) \]

Converse:
\[\{B_1, \ldots B_n\}^{-1} = \{B_1^{-1}, \ldots, B_n^{-1}\} \]

Complement:
\[\{B_1, \ldots, B_n\} = \{B \in B : B \neq B_i \text{ for each } 1 \leq i \leq n\} \]

Intersection and union are defined set-theoretically.

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):
- Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):
- Given in addition \(xRy \): Is \(xRy \) satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):
- Compute for each pair \(x, y \) the strongest constrained (minimal) relation entailed by the CSP.
 - These problems are equivalent under Turing reductions.
Reductions between CSP Problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial Turing reductions.

Proof.

CSAT ≤ \text{T} CENT and CENT ≤ \text{T} CMIN are obvious.

CENT ≤ \text{T} CSAT: We solve CENT (\text{CSP} \models xRy?) by testing satisfiability of the CSP extended by \(x\{B\}y \) where \(B \) ranges over all base relations. Let \(B_1, \ldots, B_k \) be the relations for which we get a positive answer. Then \(x\{B_1, \ldots, B_k\}y \) is entailed by the CSP.

CMIN ≤ \text{T} CENT: We use entailment for computing the minimal constraint for each pair. Starting with the universal relation, we remove one base relation until we have a minimal relation that is still entailed.

Example: Point Relations

Composition table:

<table>
<thead>
<tr>
<th></th>
<th><</th>
<th>=</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td><,=,></td>
</tr>
<tr>
<td>=</td>
<td><</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>></td>
<td><,=,></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>

Figure: Composition table for the point algebra. For example: \(\{<\} \circ \{=\} = \{<\} \)

- \(\{<,=\} \circ \{<\} = \{<\} \)
- \(\{<,>\} \circ \{<\} = \{<,=,>\} \)
- \(\{<,=\}^{-1} = \{>,=\} \)
- \(\{<,=\} \cap \{>,=\} = \{=\} \)

Path Consistency for Qualitative CSPs

Given a qualitative CSP with \(R_{ij} = R_{ji}^{-1} \). Then path consistency can be enforced by doing the following:

\[
R_{ij} := R_{ij} \cap (R_{ik} \circ R_{kj}).
\]

Path consistency guarantees . . .
- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

All this depends on the vocabulary.

Some Properties of the Point Relations

Theorem

A path consistent CSP over the point relations is consistent.

Corollary

CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem

A path consistent CSP over all point relations without \(\{<,>\} \) is minimal.

Proofs later . . .
Outlook

- Qualitative representation and reasoning usually starts with a finite vocabulary (a finite set of relations).
- Qualitative descriptions are usually simply logical theories consisting of sets of atomic formulae (and some background theory).
- Reasoning problems are (as usual) satisfiability, model finding, and deduction.
- Can be addressed with CSP methods (but note: infinite domains).
- Path consistency is the basic reasoning step . . . sometimes this is enough.
- Usually, path-consistent atomic CSPs are satisfiable. However, there exist some pathological relation systems.
- Can be taken further \(\rightarrow\) relation algebra

Literature

Literature I

Literature II