Minimal Model Reasoning

- Conflicts between defaults in default logic lead to multiple extensions
- Each extension corresponds to a maximal set of non-violated defaults
- Reasoning with defaults can also be achieved by a simpler mechanism: predicate or propositional logic + minimize the number of cases where a default (expressed as a conventional formula) is violated \(\implies \) minimal models
- Notion of minimality: cardinality vs. set-inclusion

Entailment with respect to Minimal Models

Definition

Let \(A \) be a set of atomic propositions. Let \(\Phi \) be a set of propositional formulae on \(A \), and \(B \subseteq A \) a set (called abnormalities).

Then \(\psi \) \(B \)-minimally follows from \(\Phi \) \((\Phi \models_B \psi) \) if \(I \models \psi \) for all interpretations \(I \) such that

- \(I \models \Phi \) and
- there is no \(I' \) such that \(I' \models \Phi \) and \(\{ b \in B \mid I' \models b \} \subset \{ b \in B \mid I \models b \} \).
Minimal Model Reasoning Example

$\Phi = \{ \text{student} \land \neg \text{ABstudent} \rightarrow \neg \text{earnsmoney}, \text{student}, \text{adult} \land \neg \text{ABadult} \rightarrow \text{earnsmoney}, \text{student} \rightarrow \text{adult} \}$

Φ has the following models:

$I_1 = \{ \text{student} \land \text{adult} \land \text{earnsmoney} \land \text{ABstudent} \land \text{ABadult} \}$

$I_2 = \{ \text{student} \land \text{adult} \land \neg \text{earnsmoney} \land \text{ABstudent} \land \text{ABadult} \}$

$I_3 = \{ \text{student} \land \text{adult} \land \text{earnsmoney} \land \text{ABstudent} \land \neg \text{ABadult} \}$

$I_4 = \{ \text{student} \land \text{adult} \land \neg \text{earnsmoney} \land \neg \text{ABstudent} \land \text{ABadult} \}$

Relation to Default Logic

We can embed propositional minimal model reasoning in the propositional default logic.

Theorem

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$.

Then $\Phi \models_B \psi$ if and only if ψ follows from (D, W) skeptically, where

$$D = \{ \neg b \mid b \in B \}$$

and $W = \Phi$.

Relation to Default Logic: Proof

Proof sketch.

\Rightarrow: Assume there is an extension E of (D, W) such that $\psi \notin E$. Hence there is an interpretation I such that $I \models E$ and $I \models \neg \psi$.

By the fact that there is no extension F such that $E \subseteq F$, I is a B-minimal model of Φ. Hence ψ does not B-minimally follow from Φ.

\Leftarrow: Assume ψ does not B-minimally follow from Φ. Hence there is a B-minimal model I of Φ such that $I \nmodels \psi$.

Define

$$E = \text{Th}(\Phi \cup \{ \neg b \mid b \in B, I \models \neg b \})$$

Now $I \models E$ and because $I \nmodels \psi$, $\psi \notin E$.

We can show that E is an extension of (D, W).

Because there is an extension E such that $\psi \notin E$, ψ does not skeptically follow from (D, W).

Nonmonotonic Logic Programs: Background

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic
- A better alternative to propositional logic in some applications
Nonmonotonic Logic Programs

Let \(A = \{a_1, \ldots, a_n\} \) be a set of propositions.

Rules:

\[
\begin{align*}
 c & \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k
\end{align*}
\]

where \(\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq A \)

- Meaning similar to default logic:
 1. we have derived \(b_1, \ldots, b_m \) and
 2. cannot derive any of \(d_1, \ldots, d_k \),

 then derive \(c \).

- Rules without right-hand side (facts): \(c \leftarrow \)

- Rules without left-hand side (constraints):
 \(\leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k \)

Answer Sets – Formal Definition

Definition

Let \(P \) be a set of rules without \(\text{not} \), \(\Delta \subseteq A \).

The closure \(\text{dcl}(P) \subseteq A \) of \(P \) is defined by iterative application of the rules in the obvious way. \(\Delta \) is an answer set of \(P \) if \(\Delta = \text{dcl}(P) \) and there is no constraint in \(P \) violated by \(\Delta \).

Definition (Reduct)

The reduct of a program \(P \) with respect to a set of atoms \(\Delta \subseteq A \) is defined as:

\[
P^\Delta := \{c \leftarrow b_1, \ldots, b_m | (c \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k) \in P, \{d_1, \ldots, d_k\} \cap \Delta = \emptyset\}
\]

Definition (Answer set)

\(\Delta \subseteq A \) is an answer set of \(P \) if \(\Delta \) is an answer set of \(P^\Delta \).

Examples

- \(P_1 = \{a \leftarrow, b \leftarrow a, c \leftarrow b\} \)
- \(P_2 = \{a \leftarrow b, b \leftarrow a\} \)
- \(P_3 = \{p \leftarrow \text{not } p\} \)
- \(P_4 = \{p \leftarrow \text{not } q, q \leftarrow \text{not } p\} \)
- \(P_5 = \{p \leftarrow \text{not } q, q \leftarrow \text{not } p, \leftarrow p\} \)

Complexity: existence of answer sets is NP-complete

1. Membership in NP: Guess \(\Delta \subseteq A \) (nondet. polytime), compute \(P^\Delta \), compute its closure, compare to \(\Delta \) (everything det. polytime).

2. NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

\[
\begin{align*}
p & \leftarrow \text{not } \hat{p} \\
\hat{p} & \leftarrow \text{not } p
\end{align*}
\]

for every proposition \(p \) occurring in the clauses, and

\[
\leftarrow \text{not } l_1', \text{not } l_2', \text{not } l_3'
\]

for every clause \(l_1 \lor l_2 \lor l_3 \), where \(l_i' = p \) if \(l_i = p \) and \(l_i' = \hat{p} \) if \(l_i = \neg p \).
Programs for Reasoning with Answer Sets

- smodels (Niemelä & Simons), dlv (Eiter et al.), ...
- Schematic input:

```
p(X) :- not q(X).
qu(X) :- not p(X).
par(a). par(b). par(a,c). par(b,d).
female(a).
forefather(X,Y) :- anc(X,Y), male(X).
```


difference to the propositional logic

- The ancestor relation is the transitive closure of the parent relation.
- Transitive closure cannot be (concisely) represented in propositional/predicate logic.

```
par(X,Y) -> anc(X,Y)
par(X,Z) ∨ anc(Z,Y) -> anc(X,Y)
```

The above formulae only guarantee that `anc` is a superset of the transitive closure of `par`.
- For transitive closure one needs the minimality condition in some form: nonmonotonic logics, fixpoint logics, ...

Stratification

The reason for multiple answer sets is the fact that `a` may depend on `b` and simultaneously `b` may depend on `a`.

The lack of this kind of circular dependencies makes reasoning easier.

Definition

A logic program `P` is stratified if `P` can be partitioned to `P = P_1 ∪ ... ∪ P_n` so that for all `i ∈ {1, ..., n}` and `(c ← b_1, ..., b_m, not d_1, ..., not d_k) ∈ P_i`,

1. there is no `not c` in `P_i` and
2. there are no occurrences of `c` anywhere in `P_1 ∪ ... ∪ P_{i-1}`.

Theorem

A stratified program `P` has exactly one answer set. The unique answer set can be computed in polynomial time.

Example

Our earlier examples with more than one or no answer sets:

```
P_3 = {p ← not p}
P_4 = {p ← not q, q ← not p}
```
Applications of Logic Programs

1. Simple forms of default reasoning (e.g., inheritance networks, see later)
2. A solution to the frame problem: instead of using frame axioms, use defaults
 \[a_{t+1} \leftarrow a_t, \neg a_{t+1} \]
 By default, truth-values of facts stay the same.
3. deductive databases (Datalog\(^-\))
4. et cetera: Everything that can be done with propositional logic can also be done with propositional nonmonotonic logic programs.

Literature