Artificial Intelligence

5. Constraint Satisfaction Problems

CSPs as Search Problems, Solving CSPs, Problem Structure
Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Constraint Satisfaction Problems

- In search problems, the state does not have a structure (everything is in the data structure). In CSPs, states are explicitly represented as variable assignments.
- A CSP consists of
 - a set of variables \(x_1, x_2, \ldots, x_n \) to which
 - values \(d_1, d_2, \ldots, d_i \) can be assigned
 - such that a set of constraints over the variables is respected
- A CSP is solved by a variable assignment that satisfies all given constraints.
- Formal representation language with associated general inference algorithms

Example: Map-Coloring

- Variables: WA, NT, SA, Q, NSW, V, T
- Values: \{red, green, blue\}
- Constraints: adjacent regions must have different colors, e.g., NSW \(\neq \) V
Australian Capital Territory (ACT) and Canberra (inside NSW)

View of the Australian National University and Telstra Tower

Solution assignment:
- \{ WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \}
- Perhaps in addition ACT = blue

Constraint Graph

- Works for binary CSPs (otherwise hyper-graph)
- **Nodes** = variables, **arcs** = constraints
- Graph structure can be important (e.g., connected components)

Note: Our problem is 3-colorability for a planar graph

Variations

- Binary, ternary, or even higher **arity**
- **Finite** domains \(d\) values) => \(d\) possible variable assignments
- **Infinite** domains (reals, integers)
 - linear constraints: solvable (in P if real)
 - nonlinear constraints: unsolvable
Applications

- Timetabling (classes, rooms, times)
- Configuration (hardware, cars, ...)
- Spreadsheets
- Scheduling
- Floor planning
- Frequency assignments
- ...

Backtracking Search over Assignments

- Assign values to variables step by step (order does not matter)
- Consider only one variable per search node!
- DFS with single-variable assignments is called backtracking search
- Can solve n-queens for $n \approx 25$

Algorithm

```java
function BACKTRACKING-Search(csp) returns solution/failure
    return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution/failure
    if assigned is complete then return assigned
    var ← SELECT-Unassigned-Variable(Variables[csp], assigned, csp)
    for each value in ORDER-Domain-Values(var, assigned, csp) do
        if value is consistent with assigned according to Constraints[csp] then
            result ← RECURSIVE-BACKTRACKING([var = value|assigned], csp)
            if result ≠ failure then return result
    end
    return failure
```

Example (1)
Example (2)

Example (3)

Example (4)

Improving Efficiency:
CSP Heuristics & Pruning Techniques

- Variable ordering: Which one to assign first?
- Value ordering: Which value to try first?
- Try to detect failures early on
- Try to exploit problem structure

Note: all this is not problem-specific!
Variable Ordering:

Most constrained first
- Most constrained variable:
 - choose the variable with the **fewest remaining legal values**
 - reduces branching factor!

Value Ordering:

Least Constraining Value First
- Given a variable,
 - choose first a value that rules out the **fewest values** in the remaining unassigned variables
 - We want to find an assignment that satisfies the constraints (of course, does not help if unsat.)

Variable Ordering:

Most Constraining Variable First
- Break ties among variables with the same number of remaining legal values:
 - choose variable with the **most constraints on remaining unassigned variables**
 - reduces branching factor in the next steps

Rule out Failures early on:

Forward Checking
- Whenever a value is assigned to a variable, values that are now **illegal** for other variables are removed
- Implements what the ordering heuristics implicitly compute
- **WA** = red, then **NT** cannot become red
- If all values are removed for one variable, we can stop!
Forward Checking (1)

- Keep track of remaining values
- Stop if all have been removed

![Diagram](image1)

Forward Checking (2)

- Keep track of remaining values
- Stop if all have been removed

![Diagram](image2)

Forward Checking (3)

- Keep track of remaining values
- Stop if all have been removed

![Diagram](image3)

Forward Checking (4)

- Keep track of remaining values
- Stop if all have been removed

![Diagram](image4)
Forward Checking:
Sometimes it Misses Something

- Forward Checking propagates information from assigned to unassigned variables
- However, there is no propagation between unassigned variables

![Diagram of Forward Checking]

Arc Consistency

- A directed arc \(X \rightarrow Y \) is “consistent” iff
 - for every value \(x \) of \(X \), there exists a value \(y \) of \(Y \), such that \((x,y)\) satisfies the constraint between \(X \) and \(Y \)
- Remove values from the domain of \(X \) to enforce arc-consistency
- Arc consistency detects failures earlier
- Can be used as preprocessing technique or as a propagation step during backtracking

![Diagram of Arc Consistency]

AC3 Algorithm

```plaintext
function AC3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \( X_1, X_2, \ldots, X_n \)
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
  \((X_i, X_j)\) \rightarrow REMOVE-FIRST(queue)
  if REMOVE-INCONSISTENT-VALUES\((X_i, X_j)\) then
    for each \( X_j \) in NEIGHBORS[X_i] do
      add \((X_i, X_j)\) to queue

function REMOVE-INCONSISTENT-VALUES\((X_i, X_j)\) returns true iff we remove a value
  removed \( \rightarrow \) false
  for each \( x \) in DOMAIN[X_i] do
    if no value \( y \) in DOMAIN[X_j] allows \((x,y)\) to satisfy the constraint between \( X_i \) and \( X_j \)
      then delete \( x \) from DOMAIN[X_i]; removed \( \rightarrow \) true
  return removed
```

![Diagram of AC3 Algorithm]
Properties of AC3

- AC3 runs in $O(d^2n^2)$ time, with n being the number of nodes and d being the maximal number of elements in a domain
- Of course, AC3 does not detect all inconsistencies (which is an NP-hard problem)

Problem Structure (2): Tree-structured CSPs

- If the CSP graph is a tree, then it can be solved in $O(nd^2)$
 - General CSPs need in the worst case $O(d^n)$
- Idea: Pick root, order nodes, apply arc consistency from leaves to root, and assign values starting at root

Problem Structure (1)

- CSP has two independent components
- Identifiable as connected components of constraint graph
- Can reduce the search space dramatically

Problem Structure (2): Tree-structured CSPs

- Apply arc-consistency to (X_i, X_k), when X_i is the parent of X_k, for all $k=n$ dow nto 2.
- Now one can start at X_i, assigning values from the remaining domains without creating any conflict in one sweep through the tree!
- Algorithm linear in n
Problem Structure (3): Almost Tree-structured

- **Conditioning:** Instantiate a variable and prune values in neighboring variables

- **Cutset conditioning:** Instantiate (in all ways) a set of variables in order to reduce the graph to a tree (note: finding minimal cutset is NP-hard)

Another Method: Tree Decomposition (1)

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions

Another Method: Tree Decomposition (2)

- A tree decomposition must satisfy the following conditions:
 - Every variable of the original problem appears in at least one sub-problem
 - Every constraint appears in at least one sub-problem
 - If a variable appears in two sub-problems, it must appear in all sub-problems on the path between the two sub-problems
 - The connections form a tree

Another Method: Tree Decomposition (3)

- Consider sub-problems as new mega-nodes, which have values defined by the solutions to the sub-problems
- Use technique for tree-structured CSP to find an overall solution (constraint is to have identical values for the same variable)
Tree Width

- **Tree width of a tree** decomposition = size of largest sub-problem minus 1
- **Tree width of a graph** is minimal tree width over all possible tree decompositions
- If a graph has tree width w and we know a tree decomposition with that width, we can solve the problem in $O(nd^{w+1})$
- Finding a tree decomposition with minimal tree width is NP-hard

Summary & Outlook

- CSPs are a special kind of search problem:
 - states are value assignments
 - goal test is defined by constraints
 - Backtracking = DFS with one variable assigned per node. Other intelligent backtracking techniques possible
 - Variable/value ordering heuristics can help dramatically
 - Constraint propagation prunes the search space
 - Path-consistency is a constraint propagation technique for triples of variables
 - Tree structure of CSP graph simplifies problem significantly
 - Cutset conditioning and tree decomposition are two ways to transform part of the problem into a tree
 - CSPs can also be solved using local search