Foundations of AI
4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms
Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node is in the form of an evaluation function f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the “best” f or h-value.

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

General Algorithm

```
function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn ← a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, Queueing-Fn)
```

When h is always correct, we do not need to search!
Greedy Search

A possible way to judge the “worth” of a node is to estimate its distance to the goal.

\[h(n) = \text{estimated distance from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search with this function is called a **greedy search**.

Route-finding problem: \(h = \text{straight-line distance between two locations} \).

Greedy Search from Arad to Bucharest

Heuristics

The evaluation function \(h \) in greedy searches is also called a **heuristic** function or simply a **heuristic**.

- The word **heuristic** is derived from the Greek word \(ευρητικός \) (note also: \(ευρίσκω \) !)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

\(\rightarrow \) In all cases, the heuristic is **problem-specific** and **focuses** the search!
**A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-search strategy.

\[g(n) = \text{actual cost from the initial state to } n. \]

\[h(n) = \text{estimated cost from } n \text{ to the next goal}. \]

\[f(n) = g(n) + h(n), \text{ the estimated cost of the cheapest solution through } n. \]

Let \(h^*(n) \) be the actual cost of the optimal path from \(n \) to the next goal.

\(h \) is **admissible** if the following holds for all \(n \):

\[h(n) \leq h^*(n) \]

We require that for \(A^* \), \(h \) is admissible (straight-line distance is admissible).

A* Search from Arad to Bucharest

Example: Path Planning for Robots in a Grid-World
Optimality of A*

Claim: The first solution found has the minimum path cost.
Proof: Suppose there exists a goal node G with optimal path cost f^*, but A^* has found another node G_2 with $g(G_2) > f^*$.

![Diagram of A* search]

Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*.$$

Since n was not expanded before G_2, the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*.$$

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*.$$

\rightarrow Contradicts the assumption!

Completeness and Complexity

Completeness:
If a solution exists, A^* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ.

\rightarrow Only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:
In the case in which $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a subexponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].

Normally, growth is exponential because the error is proportional to the path costs.

Heuristic Function Example

$h_1 = \text{the number of tiles in the wrong position}$

$h_2 = \text{the sum of the distances of the tiles from their goal positions (Manhattan distance)}$
Empirical Evaluation

- $d =$ distance from goal
- Average over 100 instances

<table>
<thead>
<tr>
<th></th>
<th>Search Cost</th>
<th>Effective Branching Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDS</td>
<td>A*(h1)</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39138</td>
</tr>
</tbody>
</table>

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

Local Search Methods

In many problems, it is unimportant how the goal is reached - only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a local search can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise → Hill Climbing.

Hill Climbing

function Hill-Climbing(problem) returns a solution state
inputs: problem, a problem.
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE(problem))

loop do
next ← a highest-valued successor of current
if VALUE(next) < VALUE(current) then return current
 current ← next
end
Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.

![Diagram of 8-Queens Problem]

Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```python
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
    initial: start, a state
    set T, a “temperature” controlling the probability of downward steps
    start = INITIAL-SOLUTION(problem)
    for t = schedule() do
        if random < T
            execute mutation(random, current)
            return new solution
        if random < T
            execute mutation(random, current)
            return next
    return current

Example: 8-Queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus**: Here, the algorithm can only explore at random.
- **Ridges**: Similar to plateaus.

**Solutions:**

- **Start over** when no progress is being made.
- “Inject noise” → random walk
- Tabu search: Do not apply the last $n$ operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

**Idea:** Similar to evolution, we search for solutions by “crossing”, “mutating”, and “selecting” successful solutions.

**Ingredients:**

- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

**Example:** 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossing

Many variations:
how selection will be applied, what
type of cross-over operators will be
used, etc.

Selection of individuals
according to a fitness function
and pairing

Calculation of the breaking points
and recombination

According to a given probability
elements in the string are
modified.

Summary

- **Heuristics** focus the search
- **Best-first search** expands the node with the highest
  worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal
  \( h \) we obtain a **greedy search**.
- The minimization of \( f(n) = g(n) + h(n) \) combines uniform
  and greedy searches. When \( h(n) \) is admissible, i.e., \( h^* \)
  is never overestimated, we obtain the **A* search**, which
  is complete and optimal.
- **IDA*** is a combination of the iterative-deepening and A*
  searches.
- **Local search methods** only ever work on one state,
  attempting to improve it step-wise.
- **Genetic algorithms** imitate evolution by combining good
  solutions.